File size: 1,083 Bytes
d20d355
 
 
 
 
 
 
 
 
 
 
 
45e9490
 
3a92e0c
45e9490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
language: vi
datasets:
- cc100
tags:
- summarization
- translation
- question-answering

license: mit
---

# ViT5-large

State-of-the-art pre-trained Transformer-based encoder-decoder model for Vietnamese.

## How to use
For more details, do check out [our Github repo](https://github.com/justinphan3110/ViT5). 
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large")

sentence = "Xin chào"
text =  "summarize: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)
```

## Citation
```
Coming Soon...
```