Veda0718's picture
End of training
8c028b6 verified
|
raw
history blame
3.37 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-fish
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8333333333333334

swin-tiny-patch4-window7-224-finetuned-fish

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7059
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.8803 0.5
No log 2.0 2 1.8439 0.5
No log 3.0 3 1.7572 0.5
No log 4.0 4 1.6256 0.5
No log 5.0 5 1.5082 0.5
No log 6.0 6 1.4301 0.5
No log 7.0 7 1.3379 0.5
No log 8.0 8 1.2260 0.5
No log 9.0 9 1.1071 0.6667
0.6539 10.0 10 0.9941 0.6667
0.6539 11.0 11 0.8836 0.6667
0.6539 12.0 12 0.7859 0.6667
0.6539 13.0 13 0.7059 0.8333
0.6539 14.0 14 0.6358 0.8333
0.6539 15.0 15 0.5752 0.8333
0.6539 16.0 16 0.5343 0.8333
0.6539 17.0 17 0.4994 0.8333
0.6539 18.0 18 0.4755 0.8333
0.6539 19.0 19 0.4544 0.8333
0.2777 20.0 20 0.4328 0.8333
0.2777 21.0 21 0.4171 0.8333
0.2777 22.0 22 0.4066 0.8333
0.2777 23.0 23 0.3995 0.8333
0.2777 24.0 24 0.3954 0.8333
0.2777 25.0 25 0.3933 0.8333

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1