metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-fish
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8333333333333334
swin-tiny-patch4-window7-224-finetuned-fish
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7059
- Accuracy: 0.8333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.8803 | 0.5 |
No log | 2.0 | 2 | 1.8439 | 0.5 |
No log | 3.0 | 3 | 1.7572 | 0.5 |
No log | 4.0 | 4 | 1.6256 | 0.5 |
No log | 5.0 | 5 | 1.5082 | 0.5 |
No log | 6.0 | 6 | 1.4301 | 0.5 |
No log | 7.0 | 7 | 1.3379 | 0.5 |
No log | 8.0 | 8 | 1.2260 | 0.5 |
No log | 9.0 | 9 | 1.1071 | 0.6667 |
0.6539 | 10.0 | 10 | 0.9941 | 0.6667 |
0.6539 | 11.0 | 11 | 0.8836 | 0.6667 |
0.6539 | 12.0 | 12 | 0.7859 | 0.6667 |
0.6539 | 13.0 | 13 | 0.7059 | 0.8333 |
0.6539 | 14.0 | 14 | 0.6358 | 0.8333 |
0.6539 | 15.0 | 15 | 0.5752 | 0.8333 |
0.6539 | 16.0 | 16 | 0.5343 | 0.8333 |
0.6539 | 17.0 | 17 | 0.4994 | 0.8333 |
0.6539 | 18.0 | 18 | 0.4755 | 0.8333 |
0.6539 | 19.0 | 19 | 0.4544 | 0.8333 |
0.2777 | 20.0 | 20 | 0.4328 | 0.8333 |
0.2777 | 21.0 | 21 | 0.4171 | 0.8333 |
0.2777 | 22.0 | 22 | 0.4066 | 0.8333 |
0.2777 | 23.0 | 23 | 0.3995 | 0.8333 |
0.2777 | 24.0 | 24 | 0.3954 | 0.8333 |
0.2777 | 25.0 | 25 | 0.3933 | 0.8333 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1