swin-tiny-patch4-window7-224-finetuned-fish

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8536
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.9028 0.3333
No log 2.0 2 1.8803 0.3333
No log 3.0 3 1.8603 0.3333
No log 4.0 4 1.8293 0.3333
No log 5.0 5 1.8093 0.3333
No log 6.0 6 1.7682 0.3333
No log 7.0 7 1.7140 0.3333
No log 8.0 8 1.6566 0.3333
No log 9.0 9 1.6020 0.3333
0.8416 10.0 10 1.5466 0.3333
0.8416 11.0 11 1.4709 0.3333
0.8416 12.0 12 1.3894 0.3333
0.8416 13.0 13 1.3049 0.5
0.8416 14.0 14 1.2186 0.6667
0.8416 15.0 15 1.1344 0.6667
0.8416 16.0 16 1.0706 0.6667
0.8416 17.0 17 1.0184 0.6667
0.8416 18.0 18 0.9807 0.6667
0.8416 19.0 19 0.9455 0.6667
0.433 20.0 20 0.9182 0.6667
0.433 21.0 21 0.8942 0.6667
0.433 22.0 22 0.8766 0.6667
0.433 23.0 23 0.8654 0.6667
0.433 24.0 24 0.8578 0.6667
0.433 25.0 25 0.8536 0.6667

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Veda0718/swin-tiny-patch4-window7-224-finetuned-fish

Finetuned
(492)
this model

Evaluation results