lilt-invoices / README.md
Toobese's picture
End of training
0288950
|
raw
history blame
1.96 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-invoices
    results: []

lilt-invoices

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1475
  • Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Illingaddress: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2}
  • Nvoicedate: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Nvoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Otaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 20

Training results

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3