--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-invoices results: [] --- # lilt-invoices This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1475 - Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Illingaddress: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} - Nvoicedate: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Nvoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Otaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Overall Precision: 1.0 - Overall Recall: 1.0 - Overall F1: 1.0 - Overall Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 20 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3