Souvikcmsa's picture
Update README.md
1d2f8b4
metadata
tags: autotrain
language: en
widget:
  - text: I love AutoTrain 🤗
  - Output: Positive
datasets:
  - Souvikcmsa/autotrain-data-sentiment_analysis
co2_eq_emissions: 0.029363397844935534

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification (3-class Sentiment Classification)

Validation Metrics

If you search sentiment analysis model in huggingface you find a model from finiteautomata. Their model provides micro and macro F1 score around 67%. Check out this model with around 80% of macro and micro F1 score.

  • Loss: 0.4992932379245758
  • Accuracy: 0.799017824663514
  • Macro F1: 0.8021508522962549
  • Micro F1: 0.799017824663514
  • Weighted F1: 0.7993775463659935
  • Macro Precision: 0.80406197665167
  • Micro Precision: 0.799017824663514
  • Weighted Precision: 0.8000374433849405
  • Macro Recall: 0.8005261994732908
  • Micro Recall: 0.799017824663514
  • Weighted Recall: 0.799017824663514

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Souvikcmsa/autotrain-sentiment_analysis-762923428

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("Souvikcmsa/autotrain-sentiment_analysis-762923428", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("Souvikcmsa/autotrain-sentiment_analysis-762923428", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)

OR

from transformers import pipeline

classifier = pipeline("text-classification", model = "Souvikcmsa/BERT_sentiment_analysis")
classifier("I loved Star Wars so much!")# Positive
classifier("A soccer game with multiple males playing. Some men are playing a sport.")# Neutral