Souvikcmsa
commited on
Commit
·
1d2f8b4
1
Parent(s):
08dfced
Update README.md
Browse files
README.md
CHANGED
@@ -3,6 +3,7 @@ tags: autotrain
|
|
3 |
language: en
|
4 |
widget:
|
5 |
- text: "I love AutoTrain 🤗"
|
|
|
6 |
datasets:
|
7 |
- Souvikcmsa/autotrain-data-sentiment_analysis
|
8 |
co2_eq_emissions: 0.029363397844935534
|
@@ -10,12 +11,10 @@ co2_eq_emissions: 0.029363397844935534
|
|
10 |
|
11 |
# Model Trained Using AutoTrain
|
12 |
|
13 |
-
- Problem type: Multi-class Classification
|
14 |
-
- Model ID: 762923428
|
15 |
-
- CO2 Emissions (in grams): 0.029363397844935534
|
16 |
|
17 |
## Validation Metrics
|
18 |
-
|
19 |
- Loss: 0.4992932379245758
|
20 |
- Accuracy: 0.799017824663514
|
21 |
- Macro F1: 0.8021508522962549
|
@@ -49,4 +48,12 @@ tokenizer = AutoTokenizer.from_pretrained("Souvikcmsa/autotrain-sentiment_analys
|
|
49 |
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
|
50 |
|
51 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
```
|
|
|
3 |
language: en
|
4 |
widget:
|
5 |
- text: "I love AutoTrain 🤗"
|
6 |
+
- Output: "Positive"
|
7 |
datasets:
|
8 |
- Souvikcmsa/autotrain-data-sentiment_analysis
|
9 |
co2_eq_emissions: 0.029363397844935534
|
|
|
11 |
|
12 |
# Model Trained Using AutoTrain
|
13 |
|
14 |
+
- Problem type: Multi-class Classification (3-class Sentiment Classification)
|
|
|
|
|
15 |
|
16 |
## Validation Metrics
|
17 |
+
If you search sentiment analysis model in huggingface you find a model from finiteautomata. Their model provides micro and macro F1 score around 67%. Check out this model with around 80% of macro and micro F1 score.
|
18 |
- Loss: 0.4992932379245758
|
19 |
- Accuracy: 0.799017824663514
|
20 |
- Macro F1: 0.8021508522962549
|
|
|
48 |
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
|
49 |
|
50 |
outputs = model(**inputs)
|
51 |
+
```
|
52 |
+
OR
|
53 |
+
```
|
54 |
+
from transformers import pipeline
|
55 |
+
|
56 |
+
classifier = pipeline("text-classification", model = "Souvikcmsa/BERT_sentiment_analysis")
|
57 |
+
classifier("I loved Star Wars so much!")# Positive
|
58 |
+
classifier("A soccer game with multiple males playing. Some men are playing a sport.")# Neutral
|
59 |
```
|