metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10822
- loss:CosineSimilarityLoss
base_model: neuralmind/bert-large-portuguese-cased
widget:
- source_sentence: plastificadora documento a4
sentences:
- >-
produto destinar colecionador figura acao selo moeda quadrinho raro item
historico comumente vender loja especializar feira tematico
- >-
caderno lapis caneta mochila escolar item escritorio grampeador post-it
alir papel especial trabalho artistico academico
- >-
console videogame controle headsets cadeira gamer jogo diferentes
plataforma pc playstation xbox
- source_sentence: carrinho supermercado brinquedo
sentences:
- >-
caderno lapis caneta mochila escolar item escritorio grampeador post-it
alir papel especial trabalho artistico academico
- >-
caderno lapis caneta mochila escolar item escritorio grampeador post-it
alir papel especial trabalho artistico academico
- produto voltar publico adulto brinquedo sexual jogo adulto
- source_sentence: kit prato iniciante
sentences:
- >-
paes fresco pizza pre-assadas bolo torta produto artesanal cafe
sobremeso
- >-
movel utensilio domestico item decorativo produto limpeza acessorio
organizacao manutencao casa
- >-
violoes teclado microfone pedal efeito suporte acessorio corda afinador
voltar musico iniciante profissional
- source_sentence: capacete seguranca
sentences:
- >-
artigo esportivo bola raquete acessorio academia roupa esportiva
equipamento esporte outdoor escalada ciclismo
- >-
tinta cimento ferramenta construcao material reforma piso azulejo
equipamento protecao individual
- >-
caderno lapis caneta mochila escolar item escritorio grampeador post-it
alir papel especial trabalho artistico academico
- source_sentence: livro ficcao
sentences:
- produto voltar publico adulto brinquedo sexual jogo adulto
- >-
caderno lapis caneta mochila escolar item escritorio grampeador post-it
alir papel especial trabalho artistico academico
- >-
produto basico arroz feijao massa item mercearia snack alimento congelar
dia dia situacoes emergencial
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval similarity
type: eval-similarity
metrics:
- type: pearson_cosine
value: 0.9024497617955924
name: Pearson Cosine
- type: spearman_cosine
value: 0.8404221831399815
name: Spearman Cosine
SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-large-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho2-ptbr-e4-lr3e-05")
# Run inference
sentences = [
'livro ficcao',
'produto basico arroz feijao massa item mercearia snack alimento congelar dia dia situacoes emergencial',
'produto voltar publico adulto brinquedo sexual jogo adulto',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval-similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9024 |
spearman_cosine | 0.8404 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,822 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.16 tokens
- max: 15 tokens
- min: 11 tokens
- mean: 25.08 tokens
- max: 36 tokens
- min: 0.1
- mean: 0.53
- max: 1.0
- Samples:
text1 text2 label tenis nike
artigo esportivo bola raquete acessorio academia roupa esportiva equipamento esporte outdoor escalada ciclismo
1.0
tapete Sao Carlos
tinta cimento ferramenta construcao material reforma piso azulejo equipamento protecao individual
0.1
kit sensual lua Mel
produto voltar publico adulto brinquedo sexual jogo adulto
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,203 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.09 tokens
- max: 14 tokens
- min: 11 tokens
- mean: 25.62 tokens
- max: 36 tokens
- min: 0.1
- mean: 0.57
- max: 1.0
- Samples:
text1 text2 label carvao
tinta cimento ferramenta construcao material reforma piso azulejo equipamento protecao individual
1.0
telha fibrocimento
produto basico arroz feijao massa item mercearia snack alimento congelar dia dia situacoes emergencial
0.1
racao cachorro pedigree loja decoracao
baloe paineis decorativo item tematico casamento aniversario luminaria bandeirola vela acessorio transformar ambiente festa ocasioes especial
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 3e-05weight_decay
: 0.1num_train_epochs
: 4warmup_ratio
: 0.1warmup_steps
: 135fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.1adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 135log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
---|---|---|---|---|
0.0147 | 5 | 0.2323 | - | - |
0.0295 | 10 | 0.2056 | - | - |
0.0442 | 15 | 0.2203 | - | - |
0.0590 | 20 | 0.1947 | - | - |
0.0737 | 25 | 0.1811 | - | - |
0.0885 | 30 | 0.1526 | - | - |
0.1032 | 35 | 0.1511 | - | - |
0.1180 | 40 | 0.1543 | - | - |
0.1327 | 45 | 0.1529 | - | - |
0.1475 | 50 | 0.1296 | - | - |
0.1622 | 55 | 0.1212 | - | - |
0.1770 | 60 | 0.1023 | - | - |
0.1917 | 65 | 0.1011 | - | - |
0.2065 | 70 | 0.1047 | - | - |
0.2212 | 75 | 0.1077 | - | - |
0.2360 | 80 | 0.0909 | - | - |
0.2507 | 85 | 0.0913 | - | - |
0.2655 | 90 | 0.1045 | - | - |
0.2802 | 95 | 0.0761 | - | - |
0.2950 | 100 | 0.0705 | - | - |
0.3097 | 105 | 0.086 | - | - |
0.3245 | 110 | 0.0753 | - | - |
0.3392 | 115 | 0.0652 | - | - |
0.3540 | 120 | 0.0663 | - | - |
0.3687 | 125 | 0.0862 | - | - |
0.3835 | 130 | 0.085 | - | - |
0.3982 | 135 | 0.0803 | - | - |
0.4130 | 140 | 0.088 | - | - |
0.4277 | 145 | 0.0569 | - | - |
0.4425 | 150 | 0.0689 | - | - |
0.4572 | 155 | 0.0746 | - | - |
0.4720 | 160 | 0.069 | - | - |
0.4867 | 165 | 0.0665 | - | - |
0.5015 | 170 | 0.0778 | - | - |
0.5162 | 175 | 0.0513 | - | - |
0.5310 | 180 | 0.0525 | - | - |
0.5457 | 185 | 0.0817 | - | - |
0.5605 | 190 | 0.0731 | - | - |
0.5752 | 195 | 0.0704 | - | - |
0.5900 | 200 | 0.0742 | 0.0651 | 0.8003 |
0.6047 | 205 | 0.0722 | - | - |
0.6195 | 210 | 0.0894 | - | - |
0.6342 | 215 | 0.0679 | - | - |
0.6490 | 220 | 0.0532 | - | - |
0.6637 | 225 | 0.0877 | - | - |
0.6785 | 230 | 0.2859 | - | - |
0.6932 | 235 | 0.3122 | - | - |
0.7080 | 240 | 0.1166 | - | - |
0.7227 | 245 | 0.0785 | - | - |
0.7375 | 250 | 0.0636 | - | - |
0.7522 | 255 | 0.0613 | - | - |
0.7670 | 260 | 0.0648 | - | - |
0.7817 | 265 | 0.0597 | - | - |
0.7965 | 270 | 0.0597 | - | - |
0.8112 | 275 | 0.0662 | - | - |
0.8260 | 280 | 0.0581 | - | - |
0.8407 | 285 | 0.0685 | - | - |
0.8555 | 290 | 0.0629 | - | - |
0.8702 | 295 | 0.0694 | - | - |
0.8850 | 300 | 0.055 | - | - |
0.8997 | 305 | 0.0647 | - | - |
0.9145 | 310 | 0.0634 | - | - |
0.9292 | 315 | 0.0724 | - | - |
0.9440 | 320 | 0.0658 | - | - |
0.9587 | 325 | 0.0594 | - | - |
0.9735 | 330 | 0.053 | - | - |
0.9882 | 335 | 0.0622 | - | - |
1.0029 | 340 | 0.0622 | - | - |
1.0177 | 345 | 0.0593 | - | - |
1.0324 | 350 | 0.0541 | - | - |
1.0472 | 355 | 0.0493 | - | - |
1.0619 | 360 | 0.0504 | - | - |
1.0767 | 365 | 0.0539 | - | - |
1.0914 | 370 | 0.0439 | - | - |
1.1062 | 375 | 0.0613 | - | - |
1.1209 | 380 | 0.0432 | - | - |
1.1357 | 385 | 0.0617 | - | - |
1.1504 | 390 | 0.0546 | - | - |
1.1652 | 395 | 0.0427 | - | - |
1.1799 | 400 | 0.0674 | 0.0488 | 0.8279 |
1.1947 | 405 | 0.055 | - | - |
1.2094 | 410 | 0.0393 | - | - |
1.2242 | 415 | 0.0561 | - | - |
1.2389 | 420 | 0.0531 | - | - |
1.2537 | 425 | 0.0374 | - | - |
1.2684 | 430 | 0.0374 | - | - |
1.2832 | 435 | 0.0369 | - | - |
1.2979 | 440 | 0.0408 | - | - |
1.3127 | 445 | 0.0508 | - | - |
1.3274 | 450 | 0.0558 | - | - |
1.3422 | 455 | 0.0566 | - | - |
1.3569 | 460 | 0.0466 | - | - |
1.3717 | 465 | 0.0363 | - | - |
1.3864 | 470 | 0.0489 | - | - |
1.4012 | 475 | 0.0535 | - | - |
1.4159 | 480 | 0.0502 | - | - |
1.4307 | 485 | 0.0429 | - | - |
1.4454 | 490 | 0.0541 | - | - |
1.4602 | 495 | 0.057 | - | - |
1.4749 | 500 | 0.0402 | - | - |
1.4897 | 505 | 0.0464 | - | - |
1.5044 | 510 | 0.0405 | - | - |
1.5192 | 515 | 0.0469 | - | - |
1.5339 | 520 | 0.0519 | - | - |
1.5487 | 525 | 0.0338 | - | - |
1.5634 | 530 | 0.0476 | - | - |
1.5782 | 535 | 0.0385 | - | - |
1.5929 | 540 | 0.0442 | - | - |
1.6077 | 545 | 0.0379 | - | - |
1.6224 | 550 | 0.0477 | - | - |
1.6372 | 555 | 0.0525 | - | - |
1.6519 | 560 | 0.0487 | - | - |
1.6667 | 565 | 0.0499 | - | - |
1.6814 | 570 | 0.0344 | - | - |
1.6962 | 575 | 0.0503 | - | - |
1.7109 | 580 | 0.0568 | - | - |
1.7257 | 585 | 0.0465 | - | - |
1.7404 | 590 | 0.0325 | - | - |
1.7552 | 595 | 0.0479 | - | - |
1.7699 | 600 | 0.046 | 0.0466 | 0.8309 |
1.7847 | 605 | 0.0482 | - | - |
1.7994 | 610 | 0.0546 | - | - |
1.8142 | 615 | 0.0465 | - | - |
1.8289 | 620 | 0.049 | - | - |
1.8437 | 625 | 0.0422 | - | - |
1.8584 | 630 | 0.0358 | - | - |
1.8732 | 635 | 0.0519 | - | - |
1.8879 | 640 | 0.0416 | - | - |
1.9027 | 645 | 0.0344 | - | - |
1.9174 | 650 | 0.0339 | - | - |
1.9322 | 655 | 0.0365 | - | - |
1.9469 | 660 | 0.038 | - | - |
1.9617 | 665 | 0.0417 | - | - |
1.9764 | 670 | 0.0521 | - | - |
1.9912 | 675 | 0.0242 | - | - |
2.0059 | 680 | 0.0405 | - | - |
2.0206 | 685 | 0.0233 | - | - |
2.0354 | 690 | 0.0299 | - | - |
2.0501 | 695 | 0.0194 | - | - |
2.0649 | 700 | 0.0424 | - | - |
2.0796 | 705 | 0.0245 | - | - |
2.0944 | 710 | 0.0374 | - | - |
2.1091 | 715 | 0.0295 | - | - |
2.1239 | 720 | 0.0236 | - | - |
2.1386 | 725 | 0.0477 | - | - |
2.1534 | 730 | 0.0211 | - | - |
2.1681 | 735 | 0.0306 | - | - |
2.1829 | 740 | 0.0265 | - | - |
2.1976 | 745 | 0.0398 | - | - |
2.2124 | 750 | 0.0468 | - | - |
2.2271 | 755 | 0.0252 | - | - |
2.2419 | 760 | 0.0329 | - | - |
2.2566 | 765 | 0.0317 | - | - |
2.2714 | 770 | 0.035 | - | - |
2.2861 | 775 | 0.0387 | - | - |
2.3009 | 780 | 0.037 | - | - |
2.3156 | 785 | 0.0285 | - | - |
2.3304 | 790 | 0.0377 | - | - |
2.3451 | 795 | 0.0344 | - | - |
2.3599 | 800 | 0.0335 | 0.0431 | 0.8360 |
2.3746 | 805 | 0.0296 | - | - |
2.3894 | 810 | 0.0357 | - | - |
2.4041 | 815 | 0.0244 | - | - |
2.4189 | 820 | 0.0373 | - | - |
2.4336 | 825 | 0.0295 | - | - |
2.4484 | 830 | 0.0353 | - | - |
2.4631 | 835 | 0.0303 | - | - |
2.4779 | 840 | 0.0206 | - | - |
2.4926 | 845 | 0.0284 | - | - |
2.5074 | 850 | 0.0293 | - | - |
2.5221 | 855 | 0.035 | - | - |
2.5369 | 860 | 0.0295 | - | - |
2.5516 | 865 | 0.0349 | - | - |
2.5664 | 870 | 0.0195 | - | - |
2.5811 | 875 | 0.0265 | - | - |
2.5959 | 880 | 0.0298 | - | - |
2.6106 | 885 | 0.0321 | - | - |
2.6254 | 890 | 0.0321 | - | - |
2.6401 | 895 | 0.0299 | - | - |
2.6549 | 900 | 0.0216 | - | - |
2.6696 | 905 | 0.02 | - | - |
2.6844 | 910 | 0.0277 | - | - |
2.6991 | 915 | 0.0381 | - | - |
2.7139 | 920 | 0.0296 | - | - |
2.7286 | 925 | 0.0339 | - | - |
2.7434 | 930 | 0.035 | - | - |
2.7581 | 935 | 0.0293 | - | - |
2.7729 | 940 | 0.038 | - | - |
2.7876 | 945 | 0.0291 | - | - |
2.8024 | 950 | 0.0411 | - | - |
2.8171 | 955 | 0.0377 | - | - |
2.8319 | 960 | 0.0282 | - | - |
2.8466 | 965 | 0.0388 | - | - |
2.8614 | 970 | 0.0286 | - | - |
2.8761 | 975 | 0.0177 | - | - |
2.8909 | 980 | 0.0352 | - | - |
2.9056 | 985 | 0.0329 | - | - |
2.9204 | 990 | 0.0265 | - | - |
2.9351 | 995 | 0.0363 | - | - |
2.9499 | 1000 | 0.021 | 0.0404 | 0.8374 |
2.9646 | 1005 | 0.0342 | - | - |
2.9794 | 1010 | 0.0415 | - | - |
2.9941 | 1015 | 0.0232 | - | - |
3.0088 | 1020 | 0.0251 | - | - |
3.0236 | 1025 | 0.0317 | - | - |
3.0383 | 1030 | 0.0344 | - | - |
3.0531 | 1035 | 0.021 | - | - |
3.0678 | 1040 | 0.0271 | - | - |
3.0826 | 1045 | 0.021 | - | - |
3.0973 | 1050 | 0.0151 | - | - |
3.1121 | 1055 | 0.0222 | - | - |
3.1268 | 1060 | 0.0186 | - | - |
3.1416 | 1065 | 0.0357 | - | - |
3.1563 | 1070 | 0.0179 | - | - |
3.1711 | 1075 | 0.0291 | - | - |
3.1858 | 1080 | 0.0313 | - | - |
3.2006 | 1085 | 0.0349 | - | - |
3.2153 | 1090 | 0.0181 | - | - |
3.2301 | 1095 | 0.0294 | - | - |
3.2448 | 1100 | 0.0216 | - | - |
3.2596 | 1105 | 0.0334 | - | - |
3.2743 | 1110 | 0.0256 | - | - |
3.2891 | 1115 | 0.026 | - | - |
3.3038 | 1120 | 0.0176 | - | - |
3.3186 | 1125 | 0.0231 | - | - |
3.3333 | 1130 | 0.0164 | - | - |
3.3481 | 1135 | 0.0226 | - | - |
3.3628 | 1140 | 0.0286 | - | - |
3.3776 | 1145 | 0.02 | - | - |
3.3923 | 1150 | 0.0229 | - | - |
3.4071 | 1155 | 0.0231 | - | - |
3.4218 | 1160 | 0.0289 | - | - |
3.4366 | 1165 | 0.0188 | - | - |
3.4513 | 1170 | 0.0313 | - | - |
3.4661 | 1175 | 0.0179 | - | - |
3.4808 | 1180 | 0.0157 | - | - |
3.4956 | 1185 | 0.0252 | - | - |
3.5103 | 1190 | 0.019 | - | - |
3.5251 | 1195 | 0.0251 | - | - |
3.5398 | 1200 | 0.021 | 0.0399 | 0.8404 |
3.5546 | 1205 | 0.0154 | - | - |
3.5693 | 1210 | 0.0187 | - | - |
3.5841 | 1215 | 0.0221 | - | - |
3.5988 | 1220 | 0.0148 | - | - |
3.6136 | 1225 | 0.0168 | - | - |
3.6283 | 1230 | 0.0236 | - | - |
3.6431 | 1235 | 0.0194 | - | - |
3.6578 | 1240 | 0.0245 | - | - |
3.6726 | 1245 | 0.0171 | - | - |
3.6873 | 1250 | 0.0235 | - | - |
3.7021 | 1255 | 0.0243 | - | - |
3.7168 | 1260 | 0.0325 | - | - |
3.7316 | 1265 | 0.0196 | - | - |
3.7463 | 1270 | 0.0362 | - | - |
3.7611 | 1275 | 0.0188 | - | - |
3.7758 | 1280 | 0.0151 | - | - |
3.7906 | 1285 | 0.0189 | - | - |
3.8053 | 1290 | 0.0286 | - | - |
3.8201 | 1295 | 0.0266 | - | - |
3.8348 | 1300 | 0.0216 | - | - |
3.8496 | 1305 | 0.0218 | - | - |
3.8643 | 1310 | 0.0214 | - | - |
3.8791 | 1315 | 0.0224 | - | - |
3.8938 | 1320 | 0.0213 | - | - |
3.9086 | 1325 | 0.0302 | - | - |
3.9233 | 1330 | 0.0196 | - | - |
3.9381 | 1335 | 0.0218 | - | - |
3.9528 | 1340 | 0.0226 | - | - |
3.9676 | 1345 | 0.0204 | - | - |
3.9823 | 1350 | 0.0215 | - | - |
3.9971 | 1355 | 0.0258 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.14.4
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}