SenhorDasMoscas commited on
Commit
1df8b62
1 Parent(s): 50d4566

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10822
8
+ - loss:CosineSimilarityLoss
9
+ base_model: neuralmind/bert-large-portuguese-cased
10
+ widget:
11
+ - source_sentence: plastificadora documento a4
12
+ sentences:
13
+ - produto destinar colecionador figura acao selo moeda quadrinho raro item historico
14
+ comumente vender loja especializar feira tematico
15
+ - caderno lapis caneta mochila escolar item escritorio grampeador post-it alir papel
16
+ especial trabalho artistico academico
17
+ - console videogame controle headsets cadeira gamer jogo diferentes plataforma pc
18
+ playstation xbox
19
+ - source_sentence: carrinho supermercado brinquedo
20
+ sentences:
21
+ - caderno lapis caneta mochila escolar item escritorio grampeador post-it alir papel
22
+ especial trabalho artistico academico
23
+ - caderno lapis caneta mochila escolar item escritorio grampeador post-it alir papel
24
+ especial trabalho artistico academico
25
+ - produto voltar publico adulto brinquedo sexual jogo adulto
26
+ - source_sentence: kit prato iniciante
27
+ sentences:
28
+ - paes fresco pizza pre-assadas bolo torta produto artesanal cafe sobremeso
29
+ - movel utensilio domestico item decorativo produto limpeza acessorio organizacao
30
+ manutencao casa
31
+ - violoes teclado microfone pedal efeito suporte acessorio corda afinador voltar
32
+ musico iniciante profissional
33
+ - source_sentence: capacete seguranca
34
+ sentences:
35
+ - artigo esportivo bola raquete acessorio academia roupa esportiva equipamento esporte
36
+ outdoor escalada ciclismo
37
+ - tinta cimento ferramenta construcao material reforma piso azulejo equipamento
38
+ protecao individual
39
+ - caderno lapis caneta mochila escolar item escritorio grampeador post-it alir papel
40
+ especial trabalho artistico academico
41
+ - source_sentence: livro ficcao
42
+ sentences:
43
+ - produto voltar publico adulto brinquedo sexual jogo adulto
44
+ - caderno lapis caneta mochila escolar item escritorio grampeador post-it alir papel
45
+ especial trabalho artistico academico
46
+ - produto basico arroz feijao massa item mercearia snack alimento congelar dia dia
47
+ situacoes emergencial
48
+ pipeline_tag: sentence-similarity
49
+ library_name: sentence-transformers
50
+ metrics:
51
+ - pearson_cosine
52
+ - spearman_cosine
53
+ model-index:
54
+ - name: SentenceTransformer based on neuralmind/bert-large-portuguese-cased
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: eval similarity
61
+ type: eval-similarity
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.9024497617955924
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.8404221831399815
68
+ name: Spearman Cosine
69
+ ---
70
+
71
+ # SentenceTransformer based on neuralmind/bert-large-portuguese-cased
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ - **Base model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) <!-- at revision aa302f6ea73b759f7df9cad58bd272127b67ec28 -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 1024 dimensions
82
+ - **Similarity Function:** Cosine Similarity
83
+ <!-- - **Training Dataset:** Unknown -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
90
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
91
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
92
+
93
+ ### Full Model Architecture
94
+
95
+ ```
96
+ SentenceTransformer(
97
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
98
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
99
+ )
100
+ ```
101
+
102
+ ## Usage
103
+
104
+ ### Direct Usage (Sentence Transformers)
105
+
106
+ First install the Sentence Transformers library:
107
+
108
+ ```bash
109
+ pip install -U sentence-transformers
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+ ```python
114
+ from sentence_transformers import SentenceTransformer
115
+
116
+ # Download from the 🤗 Hub
117
+ model = SentenceTransformer("SenhorDasMoscas/acho2-ptbr-e4-lr3e-05")
118
+ # Run inference
119
+ sentences = [
120
+ 'livro ficcao',
121
+ 'produto basico arroz feijao massa item mercearia snack alimento congelar dia dia situacoes emergencial',
122
+ 'produto voltar publico adulto brinquedo sexual jogo adulto',
123
+ ]
124
+ embeddings = model.encode(sentences)
125
+ print(embeddings.shape)
126
+ # [3, 1024]
127
+
128
+ # Get the similarity scores for the embeddings
129
+ similarities = model.similarity(embeddings, embeddings)
130
+ print(similarities.shape)
131
+ # [3, 3]
132
+ ```
133
+
134
+ <!--
135
+ ### Direct Usage (Transformers)
136
+
137
+ <details><summary>Click to see the direct usage in Transformers</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Downstream Usage (Sentence Transformers)
144
+
145
+ You can finetune this model on your own dataset.
146
+
147
+ <details><summary>Click to expand</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Out-of-Scope Use
154
+
155
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
156
+ -->
157
+
158
+ ## Evaluation
159
+
160
+ ### Metrics
161
+
162
+ #### Semantic Similarity
163
+
164
+ * Dataset: `eval-similarity`
165
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
166
+
167
+ | Metric | Value |
168
+ |:--------------------|:-----------|
169
+ | pearson_cosine | 0.9024 |
170
+ | **spearman_cosine** | **0.8404** |
171
+
172
+ <!--
173
+ ## Bias, Risks and Limitations
174
+
175
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
176
+ -->
177
+
178
+ <!--
179
+ ### Recommendations
180
+
181
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
182
+ -->
183
+
184
+ ## Training Details
185
+
186
+ ### Training Dataset
187
+
188
+ #### Unnamed Dataset
189
+
190
+
191
+ * Size: 10,822 training samples
192
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | text1 | text2 | label |
195
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
196
+ | type | string | string | float |
197
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.16 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 25.08 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.53</li><li>max: 1.0</li></ul> |
198
+ * Samples:
199
+ | text1 | text2 | label |
200
+ |:---------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:-----------------|
201
+ | <code>tenis nike</code> | <code>artigo esportivo bola raquete acessorio academia roupa esportiva equipamento esporte outdoor escalada ciclismo</code> | <code>1.0</code> |
202
+ | <code>tapete Sao Carlos</code> | <code>tinta cimento ferramenta construcao material reforma piso azulejo equipamento protecao individual</code> | <code>0.1</code> |
203
+ | <code>kit sensual lua Mel</code> | <code>produto voltar publico adulto brinquedo sexual jogo adulto</code> | <code>1.0</code> |
204
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
205
+ ```json
206
+ {
207
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
208
+ }
209
+ ```
210
+
211
+ ### Evaluation Dataset
212
+
213
+ #### Unnamed Dataset
214
+
215
+
216
+ * Size: 1,203 evaluation samples
217
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
218
+ * Approximate statistics based on the first 1000 samples:
219
+ | | text1 | text2 | label |
220
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
221
+ | type | string | string | float |
222
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.09 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 25.62 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.57</li><li>max: 1.0</li></ul> |
223
+ * Samples:
224
+ | text1 | text2 | label |
225
+ |:----------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
226
+ | <code>carvao</code> | <code>tinta cimento ferramenta construcao material reforma piso azulejo equipamento protecao individual</code> | <code>1.0</code> |
227
+ | <code>telha fibrocimento</code> | <code>produto basico arroz feijao massa item mercearia snack alimento congelar dia dia situacoes emergencial</code> | <code>0.1</code> |
228
+ | <code>racao cachorro pedigree loja decoracao</code> | <code>baloe paineis decorativo item tematico casamento aniversario luminaria bandeirola vela acessorio transformar ambiente festa ocasioes especial</code> | <code>0.1</code> |
229
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
230
+ ```json
231
+ {
232
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
233
+ }
234
+ ```
235
+
236
+ ### Training Hyperparameters
237
+ #### Non-Default Hyperparameters
238
+
239
+ - `eval_strategy`: steps
240
+ - `per_device_train_batch_size`: 32
241
+ - `per_device_eval_batch_size`: 32
242
+ - `learning_rate`: 3e-05
243
+ - `weight_decay`: 0.1
244
+ - `num_train_epochs`: 4
245
+ - `warmup_ratio`: 0.1
246
+ - `warmup_steps`: 135
247
+ - `fp16`: True
248
+ - `load_best_model_at_end`: True
249
+
250
+ #### All Hyperparameters
251
+ <details><summary>Click to expand</summary>
252
+
253
+ - `overwrite_output_dir`: False
254
+ - `do_predict`: False
255
+ - `eval_strategy`: steps
256
+ - `prediction_loss_only`: True
257
+ - `per_device_train_batch_size`: 32
258
+ - `per_device_eval_batch_size`: 32
259
+ - `per_gpu_train_batch_size`: None
260
+ - `per_gpu_eval_batch_size`: None
261
+ - `gradient_accumulation_steps`: 1
262
+ - `eval_accumulation_steps`: None
263
+ - `torch_empty_cache_steps`: None
264
+ - `learning_rate`: 3e-05
265
+ - `weight_decay`: 0.1
266
+ - `adam_beta1`: 0.9
267
+ - `adam_beta2`: 0.999
268
+ - `adam_epsilon`: 1e-08
269
+ - `max_grad_norm`: 1.0
270
+ - `num_train_epochs`: 4
271
+ - `max_steps`: -1
272
+ - `lr_scheduler_type`: linear
273
+ - `lr_scheduler_kwargs`: {}
274
+ - `warmup_ratio`: 0.1
275
+ - `warmup_steps`: 135
276
+ - `log_level`: passive
277
+ - `log_level_replica`: warning
278
+ - `log_on_each_node`: True
279
+ - `logging_nan_inf_filter`: True
280
+ - `save_safetensors`: True
281
+ - `save_on_each_node`: False
282
+ - `save_only_model`: False
283
+ - `restore_callback_states_from_checkpoint`: False
284
+ - `no_cuda`: False
285
+ - `use_cpu`: False
286
+ - `use_mps_device`: False
287
+ - `seed`: 42
288
+ - `data_seed`: None
289
+ - `jit_mode_eval`: False
290
+ - `use_ipex`: False
291
+ - `bf16`: False
292
+ - `fp16`: True
293
+ - `fp16_opt_level`: O1
294
+ - `half_precision_backend`: auto
295
+ - `bf16_full_eval`: False
296
+ - `fp16_full_eval`: False
297
+ - `tf32`: None
298
+ - `local_rank`: 0
299
+ - `ddp_backend`: None
300
+ - `tpu_num_cores`: None
301
+ - `tpu_metrics_debug`: False
302
+ - `debug`: []
303
+ - `dataloader_drop_last`: False
304
+ - `dataloader_num_workers`: 0
305
+ - `dataloader_prefetch_factor`: None
306
+ - `past_index`: -1
307
+ - `disable_tqdm`: False
308
+ - `remove_unused_columns`: True
309
+ - `label_names`: None
310
+ - `load_best_model_at_end`: True
311
+ - `ignore_data_skip`: False
312
+ - `fsdp`: []
313
+ - `fsdp_min_num_params`: 0
314
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
315
+ - `fsdp_transformer_layer_cls_to_wrap`: None
316
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
317
+ - `deepspeed`: None
318
+ - `label_smoothing_factor`: 0.0
319
+ - `optim`: adamw_torch
320
+ - `optim_args`: None
321
+ - `adafactor`: False
322
+ - `group_by_length`: False
323
+ - `length_column_name`: length
324
+ - `ddp_find_unused_parameters`: None
325
+ - `ddp_bucket_cap_mb`: None
326
+ - `ddp_broadcast_buffers`: False
327
+ - `dataloader_pin_memory`: True
328
+ - `dataloader_persistent_workers`: False
329
+ - `skip_memory_metrics`: True
330
+ - `use_legacy_prediction_loop`: False
331
+ - `push_to_hub`: False
332
+ - `resume_from_checkpoint`: None
333
+ - `hub_model_id`: None
334
+ - `hub_strategy`: every_save
335
+ - `hub_private_repo`: None
336
+ - `hub_always_push`: False
337
+ - `gradient_checkpointing`: False
338
+ - `gradient_checkpointing_kwargs`: None
339
+ - `include_inputs_for_metrics`: False
340
+ - `include_for_metrics`: []
341
+ - `eval_do_concat_batches`: True
342
+ - `fp16_backend`: auto
343
+ - `push_to_hub_model_id`: None
344
+ - `push_to_hub_organization`: None
345
+ - `mp_parameters`:
346
+ - `auto_find_batch_size`: False
347
+ - `full_determinism`: False
348
+ - `torchdynamo`: None
349
+ - `ray_scope`: last
350
+ - `ddp_timeout`: 1800
351
+ - `torch_compile`: False
352
+ - `torch_compile_backend`: None
353
+ - `torch_compile_mode`: None
354
+ - `dispatch_batches`: None
355
+ - `split_batches`: None
356
+ - `include_tokens_per_second`: False
357
+ - `include_num_input_tokens_seen`: False
358
+ - `neftune_noise_alpha`: None
359
+ - `optim_target_modules`: None
360
+ - `batch_eval_metrics`: False
361
+ - `eval_on_start`: False
362
+ - `use_liger_kernel`: False
363
+ - `eval_use_gather_object`: False
364
+ - `average_tokens_across_devices`: False
365
+ - `prompts`: None
366
+ - `batch_sampler`: batch_sampler
367
+ - `multi_dataset_batch_sampler`: proportional
368
+
369
+ </details>
370
+
371
+ ### Training Logs
372
+ <details><summary>Click to expand</summary>
373
+
374
+ | Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
375
+ |:----------:|:--------:|:-------------:|:---------------:|:-------------------------------:|
376
+ | 0.0147 | 5 | 0.2323 | - | - |
377
+ | 0.0295 | 10 | 0.2056 | - | - |
378
+ | 0.0442 | 15 | 0.2203 | - | - |
379
+ | 0.0590 | 20 | 0.1947 | - | - |
380
+ | 0.0737 | 25 | 0.1811 | - | - |
381
+ | 0.0885 | 30 | 0.1526 | - | - |
382
+ | 0.1032 | 35 | 0.1511 | - | - |
383
+ | 0.1180 | 40 | 0.1543 | - | - |
384
+ | 0.1327 | 45 | 0.1529 | - | - |
385
+ | 0.1475 | 50 | 0.1296 | - | - |
386
+ | 0.1622 | 55 | 0.1212 | - | - |
387
+ | 0.1770 | 60 | 0.1023 | - | - |
388
+ | 0.1917 | 65 | 0.1011 | - | - |
389
+ | 0.2065 | 70 | 0.1047 | - | - |
390
+ | 0.2212 | 75 | 0.1077 | - | - |
391
+ | 0.2360 | 80 | 0.0909 | - | - |
392
+ | 0.2507 | 85 | 0.0913 | - | - |
393
+ | 0.2655 | 90 | 0.1045 | - | - |
394
+ | 0.2802 | 95 | 0.0761 | - | - |
395
+ | 0.2950 | 100 | 0.0705 | - | - |
396
+ | 0.3097 | 105 | 0.086 | - | - |
397
+ | 0.3245 | 110 | 0.0753 | - | - |
398
+ | 0.3392 | 115 | 0.0652 | - | - |
399
+ | 0.3540 | 120 | 0.0663 | - | - |
400
+ | 0.3687 | 125 | 0.0862 | - | - |
401
+ | 0.3835 | 130 | 0.085 | - | - |
402
+ | 0.3982 | 135 | 0.0803 | - | - |
403
+ | 0.4130 | 140 | 0.088 | - | - |
404
+ | 0.4277 | 145 | 0.0569 | - | - |
405
+ | 0.4425 | 150 | 0.0689 | - | - |
406
+ | 0.4572 | 155 | 0.0746 | - | - |
407
+ | 0.4720 | 160 | 0.069 | - | - |
408
+ | 0.4867 | 165 | 0.0665 | - | - |
409
+ | 0.5015 | 170 | 0.0778 | - | - |
410
+ | 0.5162 | 175 | 0.0513 | - | - |
411
+ | 0.5310 | 180 | 0.0525 | - | - |
412
+ | 0.5457 | 185 | 0.0817 | - | - |
413
+ | 0.5605 | 190 | 0.0731 | - | - |
414
+ | 0.5752 | 195 | 0.0704 | - | - |
415
+ | 0.5900 | 200 | 0.0742 | 0.0651 | 0.8003 |
416
+ | 0.6047 | 205 | 0.0722 | - | - |
417
+ | 0.6195 | 210 | 0.0894 | - | - |
418
+ | 0.6342 | 215 | 0.0679 | - | - |
419
+ | 0.6490 | 220 | 0.0532 | - | - |
420
+ | 0.6637 | 225 | 0.0877 | - | - |
421
+ | 0.6785 | 230 | 0.2859 | - | - |
422
+ | 0.6932 | 235 | 0.3122 | - | - |
423
+ | 0.7080 | 240 | 0.1166 | - | - |
424
+ | 0.7227 | 245 | 0.0785 | - | - |
425
+ | 0.7375 | 250 | 0.0636 | - | - |
426
+ | 0.7522 | 255 | 0.0613 | - | - |
427
+ | 0.7670 | 260 | 0.0648 | - | - |
428
+ | 0.7817 | 265 | 0.0597 | - | - |
429
+ | 0.7965 | 270 | 0.0597 | - | - |
430
+ | 0.8112 | 275 | 0.0662 | - | - |
431
+ | 0.8260 | 280 | 0.0581 | - | - |
432
+ | 0.8407 | 285 | 0.0685 | - | - |
433
+ | 0.8555 | 290 | 0.0629 | - | - |
434
+ | 0.8702 | 295 | 0.0694 | - | - |
435
+ | 0.8850 | 300 | 0.055 | - | - |
436
+ | 0.8997 | 305 | 0.0647 | - | - |
437
+ | 0.9145 | 310 | 0.0634 | - | - |
438
+ | 0.9292 | 315 | 0.0724 | - | - |
439
+ | 0.9440 | 320 | 0.0658 | - | - |
440
+ | 0.9587 | 325 | 0.0594 | - | - |
441
+ | 0.9735 | 330 | 0.053 | - | - |
442
+ | 0.9882 | 335 | 0.0622 | - | - |
443
+ | 1.0029 | 340 | 0.0622 | - | - |
444
+ | 1.0177 | 345 | 0.0593 | - | - |
445
+ | 1.0324 | 350 | 0.0541 | - | - |
446
+ | 1.0472 | 355 | 0.0493 | - | - |
447
+ | 1.0619 | 360 | 0.0504 | - | - |
448
+ | 1.0767 | 365 | 0.0539 | - | - |
449
+ | 1.0914 | 370 | 0.0439 | - | - |
450
+ | 1.1062 | 375 | 0.0613 | - | - |
451
+ | 1.1209 | 380 | 0.0432 | - | - |
452
+ | 1.1357 | 385 | 0.0617 | - | - |
453
+ | 1.1504 | 390 | 0.0546 | - | - |
454
+ | 1.1652 | 395 | 0.0427 | - | - |
455
+ | 1.1799 | 400 | 0.0674 | 0.0488 | 0.8279 |
456
+ | 1.1947 | 405 | 0.055 | - | - |
457
+ | 1.2094 | 410 | 0.0393 | - | - |
458
+ | 1.2242 | 415 | 0.0561 | - | - |
459
+ | 1.2389 | 420 | 0.0531 | - | - |
460
+ | 1.2537 | 425 | 0.0374 | - | - |
461
+ | 1.2684 | 430 | 0.0374 | - | - |
462
+ | 1.2832 | 435 | 0.0369 | - | - |
463
+ | 1.2979 | 440 | 0.0408 | - | - |
464
+ | 1.3127 | 445 | 0.0508 | - | - |
465
+ | 1.3274 | 450 | 0.0558 | - | - |
466
+ | 1.3422 | 455 | 0.0566 | - | - |
467
+ | 1.3569 | 460 | 0.0466 | - | - |
468
+ | 1.3717 | 465 | 0.0363 | - | - |
469
+ | 1.3864 | 470 | 0.0489 | - | - |
470
+ | 1.4012 | 475 | 0.0535 | - | - |
471
+ | 1.4159 | 480 | 0.0502 | - | - |
472
+ | 1.4307 | 485 | 0.0429 | - | - |
473
+ | 1.4454 | 490 | 0.0541 | - | - |
474
+ | 1.4602 | 495 | 0.057 | - | - |
475
+ | 1.4749 | 500 | 0.0402 | - | - |
476
+ | 1.4897 | 505 | 0.0464 | - | - |
477
+ | 1.5044 | 510 | 0.0405 | - | - |
478
+ | 1.5192 | 515 | 0.0469 | - | - |
479
+ | 1.5339 | 520 | 0.0519 | - | - |
480
+ | 1.5487 | 525 | 0.0338 | - | - |
481
+ | 1.5634 | 530 | 0.0476 | - | - |
482
+ | 1.5782 | 535 | 0.0385 | - | - |
483
+ | 1.5929 | 540 | 0.0442 | - | - |
484
+ | 1.6077 | 545 | 0.0379 | - | - |
485
+ | 1.6224 | 550 | 0.0477 | - | - |
486
+ | 1.6372 | 555 | 0.0525 | - | - |
487
+ | 1.6519 | 560 | 0.0487 | - | - |
488
+ | 1.6667 | 565 | 0.0499 | - | - |
489
+ | 1.6814 | 570 | 0.0344 | - | - |
490
+ | 1.6962 | 575 | 0.0503 | - | - |
491
+ | 1.7109 | 580 | 0.0568 | - | - |
492
+ | 1.7257 | 585 | 0.0465 | - | - |
493
+ | 1.7404 | 590 | 0.0325 | - | - |
494
+ | 1.7552 | 595 | 0.0479 | - | - |
495
+ | 1.7699 | 600 | 0.046 | 0.0466 | 0.8309 |
496
+ | 1.7847 | 605 | 0.0482 | - | - |
497
+ | 1.7994 | 610 | 0.0546 | - | - |
498
+ | 1.8142 | 615 | 0.0465 | - | - |
499
+ | 1.8289 | 620 | 0.049 | - | - |
500
+ | 1.8437 | 625 | 0.0422 | - | - |
501
+ | 1.8584 | 630 | 0.0358 | - | - |
502
+ | 1.8732 | 635 | 0.0519 | - | - |
503
+ | 1.8879 | 640 | 0.0416 | - | - |
504
+ | 1.9027 | 645 | 0.0344 | - | - |
505
+ | 1.9174 | 650 | 0.0339 | - | - |
506
+ | 1.9322 | 655 | 0.0365 | - | - |
507
+ | 1.9469 | 660 | 0.038 | - | - |
508
+ | 1.9617 | 665 | 0.0417 | - | - |
509
+ | 1.9764 | 670 | 0.0521 | - | - |
510
+ | 1.9912 | 675 | 0.0242 | - | - |
511
+ | 2.0059 | 680 | 0.0405 | - | - |
512
+ | 2.0206 | 685 | 0.0233 | - | - |
513
+ | 2.0354 | 690 | 0.0299 | - | - |
514
+ | 2.0501 | 695 | 0.0194 | - | - |
515
+ | 2.0649 | 700 | 0.0424 | - | - |
516
+ | 2.0796 | 705 | 0.0245 | - | - |
517
+ | 2.0944 | 710 | 0.0374 | - | - |
518
+ | 2.1091 | 715 | 0.0295 | - | - |
519
+ | 2.1239 | 720 | 0.0236 | - | - |
520
+ | 2.1386 | 725 | 0.0477 | - | - |
521
+ | 2.1534 | 730 | 0.0211 | - | - |
522
+ | 2.1681 | 735 | 0.0306 | - | - |
523
+ | 2.1829 | 740 | 0.0265 | - | - |
524
+ | 2.1976 | 745 | 0.0398 | - | - |
525
+ | 2.2124 | 750 | 0.0468 | - | - |
526
+ | 2.2271 | 755 | 0.0252 | - | - |
527
+ | 2.2419 | 760 | 0.0329 | - | - |
528
+ | 2.2566 | 765 | 0.0317 | - | - |
529
+ | 2.2714 | 770 | 0.035 | - | - |
530
+ | 2.2861 | 775 | 0.0387 | - | - |
531
+ | 2.3009 | 780 | 0.037 | - | - |
532
+ | 2.3156 | 785 | 0.0285 | - | - |
533
+ | 2.3304 | 790 | 0.0377 | - | - |
534
+ | 2.3451 | 795 | 0.0344 | - | - |
535
+ | 2.3599 | 800 | 0.0335 | 0.0431 | 0.8360 |
536
+ | 2.3746 | 805 | 0.0296 | - | - |
537
+ | 2.3894 | 810 | 0.0357 | - | - |
538
+ | 2.4041 | 815 | 0.0244 | - | - |
539
+ | 2.4189 | 820 | 0.0373 | - | - |
540
+ | 2.4336 | 825 | 0.0295 | - | - |
541
+ | 2.4484 | 830 | 0.0353 | - | - |
542
+ | 2.4631 | 835 | 0.0303 | - | - |
543
+ | 2.4779 | 840 | 0.0206 | - | - |
544
+ | 2.4926 | 845 | 0.0284 | - | - |
545
+ | 2.5074 | 850 | 0.0293 | - | - |
546
+ | 2.5221 | 855 | 0.035 | - | - |
547
+ | 2.5369 | 860 | 0.0295 | - | - |
548
+ | 2.5516 | 865 | 0.0349 | - | - |
549
+ | 2.5664 | 870 | 0.0195 | - | - |
550
+ | 2.5811 | 875 | 0.0265 | - | - |
551
+ | 2.5959 | 880 | 0.0298 | - | - |
552
+ | 2.6106 | 885 | 0.0321 | - | - |
553
+ | 2.6254 | 890 | 0.0321 | - | - |
554
+ | 2.6401 | 895 | 0.0299 | - | - |
555
+ | 2.6549 | 900 | 0.0216 | - | - |
556
+ | 2.6696 | 905 | 0.02 | - | - |
557
+ | 2.6844 | 910 | 0.0277 | - | - |
558
+ | 2.6991 | 915 | 0.0381 | - | - |
559
+ | 2.7139 | 920 | 0.0296 | - | - |
560
+ | 2.7286 | 925 | 0.0339 | - | - |
561
+ | 2.7434 | 930 | 0.035 | - | - |
562
+ | 2.7581 | 935 | 0.0293 | - | - |
563
+ | 2.7729 | 940 | 0.038 | - | - |
564
+ | 2.7876 | 945 | 0.0291 | - | - |
565
+ | 2.8024 | 950 | 0.0411 | - | - |
566
+ | 2.8171 | 955 | 0.0377 | - | - |
567
+ | 2.8319 | 960 | 0.0282 | - | - |
568
+ | 2.8466 | 965 | 0.0388 | - | - |
569
+ | 2.8614 | 970 | 0.0286 | - | - |
570
+ | 2.8761 | 975 | 0.0177 | - | - |
571
+ | 2.8909 | 980 | 0.0352 | - | - |
572
+ | 2.9056 | 985 | 0.0329 | - | - |
573
+ | 2.9204 | 990 | 0.0265 | - | - |
574
+ | 2.9351 | 995 | 0.0363 | - | - |
575
+ | 2.9499 | 1000 | 0.021 | 0.0404 | 0.8374 |
576
+ | 2.9646 | 1005 | 0.0342 | - | - |
577
+ | 2.9794 | 1010 | 0.0415 | - | - |
578
+ | 2.9941 | 1015 | 0.0232 | - | - |
579
+ | 3.0088 | 1020 | 0.0251 | - | - |
580
+ | 3.0236 | 1025 | 0.0317 | - | - |
581
+ | 3.0383 | 1030 | 0.0344 | - | - |
582
+ | 3.0531 | 1035 | 0.021 | - | - |
583
+ | 3.0678 | 1040 | 0.0271 | - | - |
584
+ | 3.0826 | 1045 | 0.021 | - | - |
585
+ | 3.0973 | 1050 | 0.0151 | - | - |
586
+ | 3.1121 | 1055 | 0.0222 | - | - |
587
+ | 3.1268 | 1060 | 0.0186 | - | - |
588
+ | 3.1416 | 1065 | 0.0357 | - | - |
589
+ | 3.1563 | 1070 | 0.0179 | - | - |
590
+ | 3.1711 | 1075 | 0.0291 | - | - |
591
+ | 3.1858 | 1080 | 0.0313 | - | - |
592
+ | 3.2006 | 1085 | 0.0349 | - | - |
593
+ | 3.2153 | 1090 | 0.0181 | - | - |
594
+ | 3.2301 | 1095 | 0.0294 | - | - |
595
+ | 3.2448 | 1100 | 0.0216 | - | - |
596
+ | 3.2596 | 1105 | 0.0334 | - | - |
597
+ | 3.2743 | 1110 | 0.0256 | - | - |
598
+ | 3.2891 | 1115 | 0.026 | - | - |
599
+ | 3.3038 | 1120 | 0.0176 | - | - |
600
+ | 3.3186 | 1125 | 0.0231 | - | - |
601
+ | 3.3333 | 1130 | 0.0164 | - | - |
602
+ | 3.3481 | 1135 | 0.0226 | - | - |
603
+ | 3.3628 | 1140 | 0.0286 | - | - |
604
+ | 3.3776 | 1145 | 0.02 | - | - |
605
+ | 3.3923 | 1150 | 0.0229 | - | - |
606
+ | 3.4071 | 1155 | 0.0231 | - | - |
607
+ | 3.4218 | 1160 | 0.0289 | - | - |
608
+ | 3.4366 | 1165 | 0.0188 | - | - |
609
+ | 3.4513 | 1170 | 0.0313 | - | - |
610
+ | 3.4661 | 1175 | 0.0179 | - | - |
611
+ | 3.4808 | 1180 | 0.0157 | - | - |
612
+ | 3.4956 | 1185 | 0.0252 | - | - |
613
+ | 3.5103 | 1190 | 0.019 | - | - |
614
+ | 3.5251 | 1195 | 0.0251 | - | - |
615
+ | **3.5398** | **1200** | **0.021** | **0.0399** | **0.8404** |
616
+ | 3.5546 | 1205 | 0.0154 | - | - |
617
+ | 3.5693 | 1210 | 0.0187 | - | - |
618
+ | 3.5841 | 1215 | 0.0221 | - | - |
619
+ | 3.5988 | 1220 | 0.0148 | - | - |
620
+ | 3.6136 | 1225 | 0.0168 | - | - |
621
+ | 3.6283 | 1230 | 0.0236 | - | - |
622
+ | 3.6431 | 1235 | 0.0194 | - | - |
623
+ | 3.6578 | 1240 | 0.0245 | - | - |
624
+ | 3.6726 | 1245 | 0.0171 | - | - |
625
+ | 3.6873 | 1250 | 0.0235 | - | - |
626
+ | 3.7021 | 1255 | 0.0243 | - | - |
627
+ | 3.7168 | 1260 | 0.0325 | - | - |
628
+ | 3.7316 | 1265 | 0.0196 | - | - |
629
+ | 3.7463 | 1270 | 0.0362 | - | - |
630
+ | 3.7611 | 1275 | 0.0188 | - | - |
631
+ | 3.7758 | 1280 | 0.0151 | - | - |
632
+ | 3.7906 | 1285 | 0.0189 | - | - |
633
+ | 3.8053 | 1290 | 0.0286 | - | - |
634
+ | 3.8201 | 1295 | 0.0266 | - | - |
635
+ | 3.8348 | 1300 | 0.0216 | - | - |
636
+ | 3.8496 | 1305 | 0.0218 | - | - |
637
+ | 3.8643 | 1310 | 0.0214 | - | - |
638
+ | 3.8791 | 1315 | 0.0224 | - | - |
639
+ | 3.8938 | 1320 | 0.0213 | - | - |
640
+ | 3.9086 | 1325 | 0.0302 | - | - |
641
+ | 3.9233 | 1330 | 0.0196 | - | - |
642
+ | 3.9381 | 1335 | 0.0218 | - | - |
643
+ | 3.9528 | 1340 | 0.0226 | - | - |
644
+ | 3.9676 | 1345 | 0.0204 | - | - |
645
+ | 3.9823 | 1350 | 0.0215 | - | - |
646
+ | 3.9971 | 1355 | 0.0258 | - | - |
647
+
648
+ * The bold row denotes the saved checkpoint.
649
+ </details>
650
+
651
+ ### Framework Versions
652
+ - Python: 3.10.12
653
+ - Sentence Transformers: 3.3.1
654
+ - Transformers: 4.47.1
655
+ - PyTorch: 2.5.1+cu121
656
+ - Accelerate: 1.1.1
657
+ - Datasets: 2.14.4
658
+ - Tokenizers: 0.21.0
659
+
660
+ ## Citation
661
+
662
+ ### BibTeX
663
+
664
+ #### Sentence Transformers
665
+ ```bibtex
666
+ @inproceedings{reimers-2019-sentence-bert,
667
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
668
+ author = "Reimers, Nils and Gurevych, Iryna",
669
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
670
+ month = "11",
671
+ year = "2019",
672
+ publisher = "Association for Computational Linguistics",
673
+ url = "https://arxiv.org/abs/1908.10084",
674
+ }
675
+ ```
676
+
677
+ <!--
678
+ ## Glossary
679
+
680
+ *Clearly define terms in order to be accessible across audiences.*
681
+ -->
682
+
683
+ <!--
684
+ ## Model Card Authors
685
+
686
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
687
+ -->
688
+
689
+ <!--
690
+ ## Model Card Contact
691
+
692
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
693
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/bert-ptbr-e4-lr3e-05",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.47.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 29794
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9baa950f83fff5f8cd9a76a8423f86518066cc0c34b328d4977fdd9e45b5822a
3
+ size 1337630536
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff