metadata
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-sidewalk-oct-22
results: []
segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:
- Loss: 1.2519
- Mean Iou: 0.1522
- Mean Accuracy: 0.2003
- Overall Accuracy: 0.7240
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.7728
- Accuracy Flat-sidewalk: 0.9359
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.3852
- Accuracy Flat-parkingdriveway: 0.0097
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8668
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8650
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0000
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9477
- Accuracy Nature-terrain: 0.7234
- Accuracy Sky: 0.9033
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.5016
- Iou Flat-sidewalk: 0.7469
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.3601
- Iou Flat-parkingdriveway: 0.0096
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.5774
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5352
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0000
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7277
- Iou Nature-terrain: 0.5775
- Iou Sky: 0.8350
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.4782 | 0.05 | 20 | 2.4249 | 0.0836 | 0.1376 | 0.6010 | nan | 0.6155 | 0.8719 | 0.0 | 0.0011 | 0.0002 | nan | 0.0003 | 0.0 | 0.0 | 0.8951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7118 | 0.0 | 0.0001 | 0.0016 | 0.0 | nan | 0.0 | 0.0072 | 0.0 | 0.0 | 0.9631 | 0.0000 | 0.3367 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3522 | 0.6415 | 0.0 | 0.0011 | 0.0002 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.4197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4674 | 0.0 | 0.0001 | 0.0015 | 0.0 | nan | 0.0 | 0.0065 | 0.0 | 0.0 | 0.5431 | 0.0000 | 0.3265 | 0.0 | 0.0 | 0.0 | 0.0 |
1.7849 | 0.1 | 40 | 2.0726 | 0.0987 | 0.1471 | 0.6229 | nan | 0.5815 | 0.8992 | 0.0 | 0.0002 | 0.0003 | nan | 0.0007 | 0.0 | 0.0 | 0.8199 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7954 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9628 | 0.0000 | 0.6476 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3595 | 0.6501 | 0.0 | 0.0002 | 0.0003 | nan | 0.0007 | 0.0 | 0.0 | 0.4671 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4738 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.5760 | 0.0000 | 0.6303 | 0.0 | 0.0 | 0.0 | 0.0 |
1.7025 | 0.15 | 60 | 1.8102 | 0.1062 | 0.1576 | 0.6393 | nan | 0.6636 | 0.8973 | 0.0 | 0.0002 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8097 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9416 | 0.0000 | 0.8286 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3808 | 0.6706 | 0.0 | 0.0002 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.4459 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4857 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6293 | 0.0000 | 0.7845 | 0.0 | 0.0 | 0.0 | 0.0 |
1.7812 | 0.2 | 80 | 1.8452 | 0.1090 | 0.1569 | 0.6450 | nan | 0.7383 | 0.8884 | 0.0 | 0.0005 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8358 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9661 | 0.0067 | 0.7820 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3851 | 0.6991 | 0.0 | 0.0005 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5586 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4803 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6058 | 0.0067 | 0.7522 | 0.0 | 0.0 | 0.0 | 0.0 |
1.9004 | 0.25 | 100 | 1.6849 | 0.1120 | 0.1600 | 0.6526 | nan | 0.7163 | 0.9044 | 0.0 | 0.0257 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8449 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9620 | 0.0294 | 0.8139 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3964 | 0.6985 | 0.0 | 0.0257 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5494 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4895 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6192 | 0.0292 | 0.7757 | 0.0 | 0.0 | 0.0 | 0.0 |
1.6287 | 0.3 | 120 | 1.6376 | 0.1174 | 0.1684 | 0.6591 | nan | 0.7113 | 0.9101 | 0.0 | 0.0529 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.9426 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7552 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9463 | 0.2590 | 0.8098 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3969 | 0.6959 | 0.0 | 0.0527 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.4075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5041 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6711 | 0.2464 | 0.7814 | 0.0 | 0.0 | 0.0 | 0.0 |
1.624 | 0.35 | 140 | 1.5312 | 0.1173 | 0.1652 | 0.6629 | nan | 0.7561 | 0.9049 | 0.0 | 0.0484 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.8051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8787 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9487 | 0.0819 | 0.8608 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4224 | 0.7010 | 0.0 | 0.0482 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.5536 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4958 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6442 | 0.0799 | 0.8072 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4764 | 0.4 | 160 | 1.5197 | 0.1251 | 0.1754 | 0.6818 | nan | 0.7557 | 0.9231 | 0.0 | 0.2734 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8331 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9396 | 0.1118 | 0.8534 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4637 | 0.7207 | 0.0 | 0.2624 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.4747 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5139 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6528 | 0.1079 | 0.8056 | 0.0 | 0.0 | 0.0 | 0.0 |
1.8363 | 0.45 | 180 | 1.4539 | 0.1238 | 0.1687 | 0.6751 | nan | 0.6197 | 0.9574 | 0.0 | 0.0978 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.8247 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8816 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9511 | 0.1872 | 0.8765 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4542 | 0.6816 | 0.0 | 0.0952 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.5643 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6549 | 0.1782 | 0.8178 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4421 | 0.5 | 200 | 1.4241 | 0.1305 | 0.1784 | 0.6878 | nan | 0.7783 | 0.9214 | 0.0 | 0.1456 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8439 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9452 | 0.3053 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4476 | 0.7247 | 0.0 | 0.1441 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.5630 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5109 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6834 | 0.2905 | 0.8127 | 0.0 | 0.0 | 0.0 | 0.0 |
1.6741 | 0.55 | 220 | 1.3899 | 0.1406 | 0.1883 | 0.7029 | nan | 0.7793 | 0.9285 | 0.0 | 0.1706 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.8693 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8566 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9534 | 0.5741 | 0.8910 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4558 | 0.7302 | 0.0 | 0.1687 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.5638 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5328 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7112 | 0.5174 | 0.8188 | 0.0 | 0.0 | 0.0 | 0.0 |
1.2694 | 0.6 | 240 | 1.3387 | 0.1398 | 0.1881 | 0.7026 | nan | 0.7975 | 0.9237 | 0.0 | 0.1981 | 0.0015 | nan | 0.0 | 0.0 | 0.0 | 0.8648 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8666 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9454 | 0.5060 | 0.9148 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4599 | 0.7374 | 0.0 | 0.1953 | 0.0015 | nan | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5194 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7101 | 0.4619 | 0.8187 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1338 | 0.65 | 260 | 1.3549 | 0.1450 | 0.1945 | 0.7059 | nan | 0.8217 | 0.9051 | 0.0 | 0.2198 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.8762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8620 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9305 | 0.7001 | 0.9073 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4430 | 0.7379 | 0.0 | 0.2152 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.5540 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5244 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7440 | 0.5836 | 0.8355 | 0.0 | 0.0 | 0.0 | 0.0 |
1.299 | 0.7 | 280 | 1.3301 | 0.1468 | 0.1945 | 0.7151 | nan | 0.7655 | 0.9451 | 0.0 | 0.2522 | 0.0041 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8451 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9439 | 0.7032 | 0.8986 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4941 | 0.7318 | 0.0 | 0.2427 | 0.0041 | nan | 0.0 | 0.0 | 0.0 | 0.5595 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5348 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7259 | 0.5777 | 0.8278 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4226 | 0.75 | 300 | 1.2990 | 0.1481 | 0.1959 | 0.7166 | nan | 0.7748 | 0.9338 | 0.0 | 0.3201 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8670 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9459 | 0.6570 | 0.9029 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4872 | 0.7399 | 0.0 | 0.3048 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.5583 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7299 | 0.5648 | 0.8261 | 0.0 | 0.0 | 0.0 | 0.0 |
1.308 | 0.8 | 320 | 1.2874 | 0.1486 | 0.1980 | 0.7147 | nan | 0.8059 | 0.9152 | 0.0 | 0.3267 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.8786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8693 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9331 | 0.6937 | 0.9091 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4654 | 0.7461 | 0.0 | 0.3124 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.5471 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5229 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7431 | 0.5876 | 0.8269 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1045 | 0.85 | 340 | 1.2836 | 0.1510 | 0.1990 | 0.7184 | nan | 0.8022 | 0.9221 | 0.0 | 0.3350 | 0.0044 | nan | 0.0 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9259 | 0.7122 | 0.9027 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4729 | 0.7460 | 0.0 | 0.3199 | 0.0044 | nan | 0.0 | 0.0 | 0.0 | 0.5769 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5252 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7464 | 0.5976 | 0.8413 | 0.0 | 0.0 | 0.0 | 0.0 |
1.6215 | 0.9 | 360 | 1.2790 | 0.1503 | 0.1992 | 0.7153 | nan | 0.8199 | 0.9010 | 0.0 | 0.3979 | 0.0064 | nan | 0.0 | 0.0 | 0.0 | 0.8586 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8304 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9614 | 0.6903 | 0.9089 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4601 | 0.7518 | 0.0 | 0.3725 | 0.0064 | nan | 0.0 | 0.0 | 0.0 | 0.5798 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5358 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7033 | 0.5644 | 0.8348 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4805 | 0.95 | 380 | 1.2778 | 0.1514 | 0.2003 | 0.7215 | nan | 0.7928 | 0.9270 | 0.0 | 0.3578 | 0.0082 | nan | 0.0 | 0.0 | 0.0 | 0.8778 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8632 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9425 | 0.7324 | 0.9068 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4862 | 0.7480 | 0.0 | 0.3398 | 0.0082 | nan | 0.0 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5359 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7341 | 0.5834 | 0.8403 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1616 | 1.0 | 400 | 1.2519 | 0.1522 | 0.2003 | 0.7240 | nan | 0.7728 | 0.9359 | 0.0 | 0.3852 | 0.0097 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8650 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9477 | 0.7234 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5016 | 0.7469 | 0.0 | 0.3601 | 0.0096 | nan | 0.0 | 0.0 | 0.0 | 0.5774 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5352 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7277 | 0.5775 | 0.8350 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1