Salmamoori
commited on
Commit
•
c5230a7
1
Parent(s):
2ace4bc
End of training
Browse files
README.md
CHANGED
@@ -1,199 +1,151 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b0-finetuned-segments-sidewalk-oct-22
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b0-finetuned-segments-sidewalk-oct-22
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.2519
|
21 |
+
- Mean Iou: 0.1522
|
22 |
+
- Mean Accuracy: 0.2003
|
23 |
+
- Overall Accuracy: 0.7240
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Flat-road: 0.7728
|
26 |
+
- Accuracy Flat-sidewalk: 0.9359
|
27 |
+
- Accuracy Flat-crosswalk: 0.0
|
28 |
+
- Accuracy Flat-cyclinglane: 0.3852
|
29 |
+
- Accuracy Flat-parkingdriveway: 0.0097
|
30 |
+
- Accuracy Flat-railtrack: nan
|
31 |
+
- Accuracy Flat-curb: 0.0
|
32 |
+
- Accuracy Human-person: 0.0
|
33 |
+
- Accuracy Human-rider: 0.0
|
34 |
+
- Accuracy Vehicle-car: 0.8668
|
35 |
+
- Accuracy Vehicle-truck: 0.0
|
36 |
+
- Accuracy Vehicle-bus: 0.0
|
37 |
+
- Accuracy Vehicle-tramtrain: 0.0
|
38 |
+
- Accuracy Vehicle-motorcycle: 0.0
|
39 |
+
- Accuracy Vehicle-bicycle: 0.0
|
40 |
+
- Accuracy Vehicle-caravan: 0.0
|
41 |
+
- Accuracy Vehicle-cartrailer: 0.0
|
42 |
+
- Accuracy Construction-building: 0.8650
|
43 |
+
- Accuracy Construction-door: 0.0
|
44 |
+
- Accuracy Construction-wall: 0.0000
|
45 |
+
- Accuracy Construction-fenceguardrail: 0.0
|
46 |
+
- Accuracy Construction-bridge: 0.0
|
47 |
+
- Accuracy Construction-tunnel: nan
|
48 |
+
- Accuracy Construction-stairs: 0.0
|
49 |
+
- Accuracy Object-pole: 0.0
|
50 |
+
- Accuracy Object-trafficsign: 0.0
|
51 |
+
- Accuracy Object-trafficlight: 0.0
|
52 |
+
- Accuracy Nature-vegetation: 0.9477
|
53 |
+
- Accuracy Nature-terrain: 0.7234
|
54 |
+
- Accuracy Sky: 0.9033
|
55 |
+
- Accuracy Void-ground: 0.0
|
56 |
+
- Accuracy Void-dynamic: 0.0
|
57 |
+
- Accuracy Void-static: 0.0
|
58 |
+
- Accuracy Void-unclear: 0.0
|
59 |
+
- Iou Unlabeled: nan
|
60 |
+
- Iou Flat-road: 0.5016
|
61 |
+
- Iou Flat-sidewalk: 0.7469
|
62 |
+
- Iou Flat-crosswalk: 0.0
|
63 |
+
- Iou Flat-cyclinglane: 0.3601
|
64 |
+
- Iou Flat-parkingdriveway: 0.0096
|
65 |
+
- Iou Flat-railtrack: nan
|
66 |
+
- Iou Flat-curb: 0.0
|
67 |
+
- Iou Human-person: 0.0
|
68 |
+
- Iou Human-rider: 0.0
|
69 |
+
- Iou Vehicle-car: 0.5774
|
70 |
+
- Iou Vehicle-truck: 0.0
|
71 |
+
- Iou Vehicle-bus: 0.0
|
72 |
+
- Iou Vehicle-tramtrain: 0.0
|
73 |
+
- Iou Vehicle-motorcycle: 0.0
|
74 |
+
- Iou Vehicle-bicycle: 0.0
|
75 |
+
- Iou Vehicle-caravan: 0.0
|
76 |
+
- Iou Vehicle-cartrailer: 0.0
|
77 |
+
- Iou Construction-building: 0.5352
|
78 |
+
- Iou Construction-door: 0.0
|
79 |
+
- Iou Construction-wall: 0.0000
|
80 |
+
- Iou Construction-fenceguardrail: 0.0
|
81 |
+
- Iou Construction-bridge: 0.0
|
82 |
+
- Iou Construction-tunnel: nan
|
83 |
+
- Iou Construction-stairs: 0.0
|
84 |
+
- Iou Object-pole: 0.0
|
85 |
+
- Iou Object-trafficsign: 0.0
|
86 |
+
- Iou Object-trafficlight: 0.0
|
87 |
+
- Iou Nature-vegetation: 0.7277
|
88 |
+
- Iou Nature-terrain: 0.5775
|
89 |
+
- Iou Sky: 0.8350
|
90 |
+
- Iou Void-ground: 0.0
|
91 |
+
- Iou Void-dynamic: 0.0
|
92 |
+
- Iou Void-static: 0.0
|
93 |
+
- Iou Void-unclear: 0.0
|
94 |
+
|
95 |
+
## Model description
|
96 |
+
|
97 |
+
More information needed
|
98 |
+
|
99 |
+
## Intended uses & limitations
|
100 |
+
|
101 |
+
More information needed
|
102 |
+
|
103 |
+
## Training and evaluation data
|
104 |
+
|
105 |
+
More information needed
|
106 |
+
|
107 |
+
## Training procedure
|
108 |
+
|
109 |
+
### Training hyperparameters
|
110 |
+
|
111 |
+
The following hyperparameters were used during training:
|
112 |
+
- learning_rate: 6e-05
|
113 |
+
- train_batch_size: 2
|
114 |
+
- eval_batch_size: 2
|
115 |
+
- seed: 42
|
116 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
117 |
+
- lr_scheduler_type: linear
|
118 |
+
- num_epochs: 1
|
119 |
+
|
120 |
+
### Training results
|
121 |
+
|
122 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
123 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
124 |
+
| 2.4782 | 0.05 | 20 | 2.4249 | 0.0836 | 0.1376 | 0.6010 | nan | 0.6155 | 0.8719 | 0.0 | 0.0011 | 0.0002 | nan | 0.0003 | 0.0 | 0.0 | 0.8951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7118 | 0.0 | 0.0001 | 0.0016 | 0.0 | nan | 0.0 | 0.0072 | 0.0 | 0.0 | 0.9631 | 0.0000 | 0.3367 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3522 | 0.6415 | 0.0 | 0.0011 | 0.0002 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.4197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4674 | 0.0 | 0.0001 | 0.0015 | 0.0 | nan | 0.0 | 0.0065 | 0.0 | 0.0 | 0.5431 | 0.0000 | 0.3265 | 0.0 | 0.0 | 0.0 | 0.0 |
|
125 |
+
| 1.7849 | 0.1 | 40 | 2.0726 | 0.0987 | 0.1471 | 0.6229 | nan | 0.5815 | 0.8992 | 0.0 | 0.0002 | 0.0003 | nan | 0.0007 | 0.0 | 0.0 | 0.8199 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7954 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9628 | 0.0000 | 0.6476 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3595 | 0.6501 | 0.0 | 0.0002 | 0.0003 | nan | 0.0007 | 0.0 | 0.0 | 0.4671 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4738 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.5760 | 0.0000 | 0.6303 | 0.0 | 0.0 | 0.0 | 0.0 |
|
126 |
+
| 1.7025 | 0.15 | 60 | 1.8102 | 0.1062 | 0.1576 | 0.6393 | nan | 0.6636 | 0.8973 | 0.0 | 0.0002 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8097 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9416 | 0.0000 | 0.8286 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3808 | 0.6706 | 0.0 | 0.0002 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.4459 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4857 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6293 | 0.0000 | 0.7845 | 0.0 | 0.0 | 0.0 | 0.0 |
|
127 |
+
| 1.7812 | 0.2 | 80 | 1.8452 | 0.1090 | 0.1569 | 0.6450 | nan | 0.7383 | 0.8884 | 0.0 | 0.0005 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8358 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9661 | 0.0067 | 0.7820 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3851 | 0.6991 | 0.0 | 0.0005 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5586 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4803 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6058 | 0.0067 | 0.7522 | 0.0 | 0.0 | 0.0 | 0.0 |
|
128 |
+
| 1.9004 | 0.25 | 100 | 1.6849 | 0.1120 | 0.1600 | 0.6526 | nan | 0.7163 | 0.9044 | 0.0 | 0.0257 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8449 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9620 | 0.0294 | 0.8139 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3964 | 0.6985 | 0.0 | 0.0257 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5494 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4895 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6192 | 0.0292 | 0.7757 | 0.0 | 0.0 | 0.0 | 0.0 |
|
129 |
+
| 1.6287 | 0.3 | 120 | 1.6376 | 0.1174 | 0.1684 | 0.6591 | nan | 0.7113 | 0.9101 | 0.0 | 0.0529 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.9426 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7552 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9463 | 0.2590 | 0.8098 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3969 | 0.6959 | 0.0 | 0.0527 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.4075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5041 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6711 | 0.2464 | 0.7814 | 0.0 | 0.0 | 0.0 | 0.0 |
|
130 |
+
| 1.624 | 0.35 | 140 | 1.5312 | 0.1173 | 0.1652 | 0.6629 | nan | 0.7561 | 0.9049 | 0.0 | 0.0484 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.8051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8787 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9487 | 0.0819 | 0.8608 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4224 | 0.7010 | 0.0 | 0.0482 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.5536 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4958 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6442 | 0.0799 | 0.8072 | 0.0 | 0.0 | 0.0 | 0.0 |
|
131 |
+
| 1.4764 | 0.4 | 160 | 1.5197 | 0.1251 | 0.1754 | 0.6818 | nan | 0.7557 | 0.9231 | 0.0 | 0.2734 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8331 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9396 | 0.1118 | 0.8534 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4637 | 0.7207 | 0.0 | 0.2624 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.4747 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5139 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6528 | 0.1079 | 0.8056 | 0.0 | 0.0 | 0.0 | 0.0 |
|
132 |
+
| 1.8363 | 0.45 | 180 | 1.4539 | 0.1238 | 0.1687 | 0.6751 | nan | 0.6197 | 0.9574 | 0.0 | 0.0978 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.8247 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8816 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9511 | 0.1872 | 0.8765 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4542 | 0.6816 | 0.0 | 0.0952 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.5643 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6549 | 0.1782 | 0.8178 | 0.0 | 0.0 | 0.0 | 0.0 |
|
133 |
+
| 1.4421 | 0.5 | 200 | 1.4241 | 0.1305 | 0.1784 | 0.6878 | nan | 0.7783 | 0.9214 | 0.0 | 0.1456 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8439 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9452 | 0.3053 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4476 | 0.7247 | 0.0 | 0.1441 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.5630 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5109 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6834 | 0.2905 | 0.8127 | 0.0 | 0.0 | 0.0 | 0.0 |
|
134 |
+
| 1.6741 | 0.55 | 220 | 1.3899 | 0.1406 | 0.1883 | 0.7029 | nan | 0.7793 | 0.9285 | 0.0 | 0.1706 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.8693 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8566 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9534 | 0.5741 | 0.8910 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4558 | 0.7302 | 0.0 | 0.1687 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.5638 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5328 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7112 | 0.5174 | 0.8188 | 0.0 | 0.0 | 0.0 | 0.0 |
|
135 |
+
| 1.2694 | 0.6 | 240 | 1.3387 | 0.1398 | 0.1881 | 0.7026 | nan | 0.7975 | 0.9237 | 0.0 | 0.1981 | 0.0015 | nan | 0.0 | 0.0 | 0.0 | 0.8648 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8666 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9454 | 0.5060 | 0.9148 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4599 | 0.7374 | 0.0 | 0.1953 | 0.0015 | nan | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5194 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7101 | 0.4619 | 0.8187 | 0.0 | 0.0 | 0.0 | 0.0 |
|
136 |
+
| 1.1338 | 0.65 | 260 | 1.3549 | 0.1450 | 0.1945 | 0.7059 | nan | 0.8217 | 0.9051 | 0.0 | 0.2198 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.8762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8620 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9305 | 0.7001 | 0.9073 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4430 | 0.7379 | 0.0 | 0.2152 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.5540 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5244 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7440 | 0.5836 | 0.8355 | 0.0 | 0.0 | 0.0 | 0.0 |
|
137 |
+
| 1.299 | 0.7 | 280 | 1.3301 | 0.1468 | 0.1945 | 0.7151 | nan | 0.7655 | 0.9451 | 0.0 | 0.2522 | 0.0041 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8451 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9439 | 0.7032 | 0.8986 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4941 | 0.7318 | 0.0 | 0.2427 | 0.0041 | nan | 0.0 | 0.0 | 0.0 | 0.5595 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5348 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7259 | 0.5777 | 0.8278 | 0.0 | 0.0 | 0.0 | 0.0 |
|
138 |
+
| 1.4226 | 0.75 | 300 | 1.2990 | 0.1481 | 0.1959 | 0.7166 | nan | 0.7748 | 0.9338 | 0.0 | 0.3201 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8670 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9459 | 0.6570 | 0.9029 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4872 | 0.7399 | 0.0 | 0.3048 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.5583 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7299 | 0.5648 | 0.8261 | 0.0 | 0.0 | 0.0 | 0.0 |
|
139 |
+
| 1.308 | 0.8 | 320 | 1.2874 | 0.1486 | 0.1980 | 0.7147 | nan | 0.8059 | 0.9152 | 0.0 | 0.3267 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.8786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8693 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9331 | 0.6937 | 0.9091 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4654 | 0.7461 | 0.0 | 0.3124 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.5471 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5229 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7431 | 0.5876 | 0.8269 | 0.0 | 0.0 | 0.0 | 0.0 |
|
140 |
+
| 1.1045 | 0.85 | 340 | 1.2836 | 0.1510 | 0.1990 | 0.7184 | nan | 0.8022 | 0.9221 | 0.0 | 0.3350 | 0.0044 | nan | 0.0 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9259 | 0.7122 | 0.9027 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4729 | 0.7460 | 0.0 | 0.3199 | 0.0044 | nan | 0.0 | 0.0 | 0.0 | 0.5769 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5252 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7464 | 0.5976 | 0.8413 | 0.0 | 0.0 | 0.0 | 0.0 |
|
141 |
+
| 1.6215 | 0.9 | 360 | 1.2790 | 0.1503 | 0.1992 | 0.7153 | nan | 0.8199 | 0.9010 | 0.0 | 0.3979 | 0.0064 | nan | 0.0 | 0.0 | 0.0 | 0.8586 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8304 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9614 | 0.6903 | 0.9089 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4601 | 0.7518 | 0.0 | 0.3725 | 0.0064 | nan | 0.0 | 0.0 | 0.0 | 0.5798 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5358 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7033 | 0.5644 | 0.8348 | 0.0 | 0.0 | 0.0 | 0.0 |
|
142 |
+
| 1.4805 | 0.95 | 380 | 1.2778 | 0.1514 | 0.2003 | 0.7215 | nan | 0.7928 | 0.9270 | 0.0 | 0.3578 | 0.0082 | nan | 0.0 | 0.0 | 0.0 | 0.8778 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8632 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9425 | 0.7324 | 0.9068 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4862 | 0.7480 | 0.0 | 0.3398 | 0.0082 | nan | 0.0 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5359 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7341 | 0.5834 | 0.8403 | 0.0 | 0.0 | 0.0 | 0.0 |
|
143 |
+
| 1.1616 | 1.0 | 400 | 1.2519 | 0.1522 | 0.2003 | 0.7240 | nan | 0.7728 | 0.9359 | 0.0 | 0.3852 | 0.0097 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8650 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9477 | 0.7234 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5016 | 0.7469 | 0.0 | 0.3601 | 0.0096 | nan | 0.0 | 0.0 | 0.0 | 0.5774 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5352 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7277 | 0.5775 | 0.8350 | 0.0 | 0.0 | 0.0 | 0.0 |
|
144 |
+
|
145 |
+
|
146 |
+
### Framework versions
|
147 |
+
|
148 |
+
- Transformers 4.41.2
|
149 |
+
- Pytorch 2.3.0+cu121
|
150 |
+
- Datasets 2.19.2
|
151 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "flat-road",
|
33 |
+
"2": "flat-sidewalk",
|
34 |
+
"3": "flat-crosswalk",
|
35 |
+
"4": "flat-cyclinglane",
|
36 |
+
"5": "flat-parkingdriveway",
|
37 |
+
"6": "flat-railtrack",
|
38 |
+
"7": "flat-curb",
|
39 |
+
"8": "human-person",
|
40 |
+
"9": "human-rider",
|
41 |
+
"10": "vehicle-car",
|
42 |
+
"11": "vehicle-truck",
|
43 |
+
"12": "vehicle-bus",
|
44 |
+
"13": "vehicle-tramtrain",
|
45 |
+
"14": "vehicle-motorcycle",
|
46 |
+
"15": "vehicle-bicycle",
|
47 |
+
"16": "vehicle-caravan",
|
48 |
+
"17": "vehicle-cartrailer",
|
49 |
+
"18": "construction-building",
|
50 |
+
"19": "construction-door",
|
51 |
+
"20": "construction-wall",
|
52 |
+
"21": "construction-fenceguardrail",
|
53 |
+
"22": "construction-bridge",
|
54 |
+
"23": "construction-tunnel",
|
55 |
+
"24": "construction-stairs",
|
56 |
+
"25": "object-pole",
|
57 |
+
"26": "object-trafficsign",
|
58 |
+
"27": "object-trafficlight",
|
59 |
+
"28": "nature-vegetation",
|
60 |
+
"29": "nature-terrain",
|
61 |
+
"30": "sky",
|
62 |
+
"31": "void-ground",
|
63 |
+
"32": "void-dynamic",
|
64 |
+
"33": "void-static",
|
65 |
+
"34": "void-unclear"
|
66 |
+
},
|
67 |
+
"image_size": 224,
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"label2id": {
|
70 |
+
"construction-bridge": 22,
|
71 |
+
"construction-building": 18,
|
72 |
+
"construction-door": 19,
|
73 |
+
"construction-fenceguardrail": 21,
|
74 |
+
"construction-stairs": 24,
|
75 |
+
"construction-tunnel": 23,
|
76 |
+
"construction-wall": 20,
|
77 |
+
"flat-crosswalk": 3,
|
78 |
+
"flat-curb": 7,
|
79 |
+
"flat-cyclinglane": 4,
|
80 |
+
"flat-parkingdriveway": 5,
|
81 |
+
"flat-railtrack": 6,
|
82 |
+
"flat-road": 1,
|
83 |
+
"flat-sidewalk": 2,
|
84 |
+
"human-person": 8,
|
85 |
+
"human-rider": 9,
|
86 |
+
"nature-terrain": 29,
|
87 |
+
"nature-vegetation": 28,
|
88 |
+
"object-pole": 25,
|
89 |
+
"object-trafficlight": 27,
|
90 |
+
"object-trafficsign": 26,
|
91 |
+
"sky": 30,
|
92 |
+
"unlabeled": 0,
|
93 |
+
"vehicle-bicycle": 15,
|
94 |
+
"vehicle-bus": 12,
|
95 |
+
"vehicle-car": 10,
|
96 |
+
"vehicle-caravan": 16,
|
97 |
+
"vehicle-cartrailer": 17,
|
98 |
+
"vehicle-motorcycle": 14,
|
99 |
+
"vehicle-tramtrain": 13,
|
100 |
+
"vehicle-truck": 11,
|
101 |
+
"void-dynamic": 32,
|
102 |
+
"void-ground": 31,
|
103 |
+
"void-static": 33,
|
104 |
+
"void-unclear": 34
|
105 |
+
},
|
106 |
+
"layer_norm_eps": 1e-06,
|
107 |
+
"mlp_ratios": [
|
108 |
+
4,
|
109 |
+
4,
|
110 |
+
4,
|
111 |
+
4
|
112 |
+
],
|
113 |
+
"model_type": "segformer",
|
114 |
+
"num_attention_heads": [
|
115 |
+
1,
|
116 |
+
2,
|
117 |
+
5,
|
118 |
+
8
|
119 |
+
],
|
120 |
+
"num_channels": 3,
|
121 |
+
"num_encoder_blocks": 4,
|
122 |
+
"patch_sizes": [
|
123 |
+
7,
|
124 |
+
3,
|
125 |
+
3,
|
126 |
+
3
|
127 |
+
],
|
128 |
+
"reshape_last_stage": true,
|
129 |
+
"semantic_loss_ignore_index": 255,
|
130 |
+
"sr_ratios": [
|
131 |
+
8,
|
132 |
+
4,
|
133 |
+
2,
|
134 |
+
1
|
135 |
+
],
|
136 |
+
"strides": [
|
137 |
+
4,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"torch_dtype": "float32",
|
143 |
+
"transformers_version": "4.41.2"
|
144 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3552981da5a6b6e2a9713d1ced7c4e0eb50432ce1230d04251582be49e460dd
|
3 |
+
size 14918708
|
runs/Jun13_05-56-01_e29e108630c4/events.out.tfevents.1718258212.e29e108630c4.6049.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86f11fbe533afc5f7d31c2399eef86fcdbbd089c6fedd8ce9923ae9cada2758b
|
3 |
+
size 17116
|
runs/Jun13_05-57-53_e29e108630c4/events.out.tfevents.1718258287.e29e108630c4.6049.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3203acb80bf5ba7862ef848f635005a839f41ffe11c2834d94fec942d391c13
|
3 |
+
size 190986
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16f1d834be7b8e12872124c7dcbed643b4a220880eeb56aec44292c0456816d0
|
3 |
+
size 5176
|