|
--- |
|
license: other |
|
license_name: sla0044 |
|
license_link: >- |
|
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/yolov8n/LICENSE.md |
|
pipeline_tag: object-detection |
|
--- |
|
# Yolov8n object detection quantized |
|
|
|
## **Use case** : `Object detection` |
|
|
|
# Model description |
|
|
|
Yolov8n is a lightweight and efficient object detection model designed for instance segmentation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_seg indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems. |
|
|
|
Yolov8n is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter. |
|
|
|
## Network information |
|
|
|
|
|
| Network information | Value | |
|
|-------------------------|-----------------| |
|
| Framework | TensorFlow Lite | |
|
| Quantization | int8 | |
|
| Provenance | https://docs.ultralytics.com/tasks/detect/ | |
|
|
|
|
|
## Networks inputs / outputs |
|
|
|
With an image resolution of NxM and K classes to detect: |
|
|
|
| Input Shape | Description | |
|
| ----- | ----------- | |
|
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | |
|
|
|
| Output Shape | Description | |
|
| ----- | ----------- | |
|
| (1, 4+K, F) | FLOAT values Where F = (N/8)^2 + (N/16)^2 + (N/32)^2 is the 3 concatenated feature maps | |
|
|
|
|
|
## Recommended Platforms |
|
|
|
|
|
| Platform | Supported | Recommended | |
|
|----------|-----------|-------------| |
|
| STM32L0 | [] | [] | |
|
| STM32L4 | [] | [] | |
|
| STM32U5 | [] | [] | |
|
| STM32H7 | [] | [] | |
|
| STM32MP1 | [] | [] | |
|
| STM32MP2 | [x] | [x] | |
|
| STM32N6 | [x] | [x] | |
|
|
|
|
|
# Performances |
|
|
|
## Metrics |
|
|
|
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. |
|
|
|
|
|
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset) |
|
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version | |
|
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 697.5 | 0.0 | 2965.61 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1626 | 0.0 | 2970.13 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2162.5 | 0.0 | 2975.99 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2704 | 0.0 | 2987.52 | 10.0.0 | 2.0.0 | |
|
|
|
|
|
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset) |
|
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |
|
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 18.91 | 52.89 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 28.6 | 34.97 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 38.32 | 26.09 | 10.0.0 | 2.0.0 | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 63.03 | 15.86 | 10.0.0 | 2.0.0 | |
|
|
|
|
|
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset) |
|
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework | |
|
|-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------| |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 | v5.0.0 | OpenVX | |
|
| [YOLOv8n per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 | v5.0.0 | OpenVX | |
|
|
|
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization** |
|
|
|
### AP on COCO Person dataset |
|
|
|
|
|
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287 |
|
|
|
|
|
| Model | Format | Resolution | AP* | |
|
|-------|--------|------------|----------------| |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | Int8 | 192x192x3 | 56.90 % | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | Int8 | 256x256x3 | 62.60 % | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | Int8 | 320x320x3 | 66.20 % | |
|
| [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | Int8 | 416x416x3 | 68.90 % | |
|
|
|
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001 |
|
|
|
## Integration in a simple example and other services support: |
|
|
|
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services). |
|
The models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/). |
|
|
|
Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/pose/#train) to retrain the models. |
|
|
|
# References |
|
|
|
<a id="1">[1]</a> |
|
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. |
|
@article{DBLP:journals/corr/LinMBHPRDZ14, |
|
author = {Tsung{-}Yi Lin and |
|
Michael Maire and |
|
Serge J. Belongie and |
|
Lubomir D. Bourdev and |
|
Ross B. Girshick and |
|
James Hays and |
|
Pietro Perona and |
|
Deva Ramanan and |
|
Piotr Doll{'{a} }r and |
|
C. Lawrence Zitnick}, |
|
title = {Microsoft {COCO:} Common Objects in Context}, |
|
journal = {CoRR}, |
|
volume = {abs/1405.0312}, |
|
year = {2014}, |
|
url = {http://arxiv.org/abs/1405.0312}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1405.0312}, |
|
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, |
|
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
|
|
|