Object Detection
FBAGSTM commited on
Commit
5b65f73
·
verified ·
1 Parent(s): 7f4b24c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -6
README.md CHANGED
@@ -1,6 +1,136 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/yolov8n/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/yolov8n/LICENSE.md
6
+ pipeline_tag: object-detection
7
+ ---
8
+ # Yolov8n object detection quantized
9
+
10
+ ## **Use case** : `Object detection`
11
+
12
+ # Model description
13
+
14
+ Yolov8n is a lightweight and efficient object detection model designed for instance segmentation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_seg indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
15
+
16
+ Yolov8n is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
17
+
18
+ ## Network information
19
+
20
+
21
+ | Network information | Value |
22
+ |-------------------------|-----------------|
23
+ | Framework | TensorFlow Lite |
24
+ | Quantization | int8 |
25
+ | Provenance | https://docs.ultralytics.com/tasks/detect/ |
26
+
27
+
28
+ ## Networks inputs / outputs
29
+
30
+ With an image resolution of NxM and K classes to detect:
31
+
32
+ | Input Shape | Description |
33
+ | ----- | ----------- |
34
+ | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
35
+
36
+ | Output Shape | Description |
37
+ | ----- | ----------- |
38
+ | (1, 4+K, F) | FLOAT values Where F = (N/8)^2 + (N/16)^2 + (N/32)^2 is the 3 concatenated feature maps |
39
+
40
+
41
+ ## Recommended Platforms
42
+
43
+
44
+ | Platform | Supported | Recommended |
45
+ |----------|-----------|-------------|
46
+ | STM32L0 | [] | [] |
47
+ | STM32L4 | [] | [] |
48
+ | STM32U5 | [] | [] |
49
+ | STM32H7 | [] | [] |
50
+ | STM32MP1 | [] | [] |
51
+ | STM32MP2 | [x] | [x] |
52
+ | STM32N6 | [x] | [x] |
53
+
54
+
55
+ # Performances
56
+
57
+ ## Metrics
58
+
59
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
60
+
61
+
62
+ ### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
63
+ |Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
64
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
65
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 697.5 | 0.0 | 2965.61 | 10.0.0 | 2.0.0 |
66
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1626 | 0.0 | 2970.13 | 10.0.0 | 2.0.0 |
67
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2162.5 | 0.0 | 2975.99 | 10.0.0 | 2.0.0 |
68
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2704 | 0.0 | 2987.52 | 10.0.0 | 2.0.0 |
69
+
70
+
71
+ ### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
72
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
73
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
74
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 18.91 | 52.89 | 10.0.0 | 2.0.0 |
75
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 28.6 | 34.97 | 10.0.0 | 2.0.0 |
76
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 38.32 | 26.09 | 10.0.0 | 2.0.0 |
77
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 63.03 | 15.86 | 10.0.0 | 2.0.0 |
78
+
79
+
80
+ ### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
81
+ Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
82
+ |-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
83
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 | v5.0.0 | OpenVX |
84
+ | [YOLOv8n per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 | v5.0.0 | OpenVX |
85
+
86
+ ** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
87
+
88
+ ### AP on COCO Person dataset
89
+
90
+
91
+ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
92
+
93
+
94
+ | Model | Format | Resolution | AP* |
95
+ |-------|--------|------------|----------------|
96
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_192_quant_pc_uf_od_coco-person.tflite) | Int8 | 192x192x3 | 56.90 % |
97
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_256_quant_pc_uf_od_coco-person.tflite) | Int8 | 256x256x3 | 62.60 % |
98
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_320_quant_pc_uf_od_coco-person.tflite) | Int8 | 320x320x3 | 66.20 % |
99
+ | [YOLOv8n per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/object_detection/yolov8n_416_quant_pc_uf_od_coco-person.tflite) | Int8 | 416x416x3 | 68.90 % |
100
+
101
+ \* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
102
+
103
+ ## Integration in a simple example and other services support:
104
+
105
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
106
+ The models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
107
+
108
+ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/pose/#train) to retrain the models.
109
+
110
+ # References
111
+
112
+ <a id="1">[1]</a>
113
+ “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
114
+ @article{DBLP:journals/corr/LinMBHPRDZ14,
115
+ author = {Tsung{-}Yi Lin and
116
+ Michael Maire and
117
+ Serge J. Belongie and
118
+ Lubomir D. Bourdev and
119
+ Ross B. Girshick and
120
+ James Hays and
121
+ Pietro Perona and
122
+ Deva Ramanan and
123
+ Piotr Doll{'{a} }r and
124
+ C. Lawrence Zitnick},
125
+ title = {Microsoft {COCO:} Common Objects in Context},
126
+ journal = {CoRR},
127
+ volume = {abs/1405.0312},
128
+ year = {2014},
129
+ url = {http://arxiv.org/abs/1405.0312},
130
+ archivePrefix = {arXiv},
131
+ eprint = {1405.0312},
132
+ timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
133
+ biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
134
+ bibsource = {dblp computer science bibliography, https://dblp.org}
135
+ }
136
+