metadata
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- nl
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-1b-nl
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: nl
metrics:
- name: Test WER
type: wer
value: 11.12
- name: Test CER
type: cer
value: 3.2
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: nl
metrics:
- name: Test WER
type: wer
value: 31.92
- name: Test CER
type: cer
value: 13.87
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: nl
metrics:
- name: Test WER
type: wer
value: 32.17
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. It achieves the following results on the evaluation set:
- Loss: 0.1479
- Wer: 0.1156
Model description
Model fine-tuned using the wav2vec-als-r-1b model architecture
Intended uses & limitations
More information needed
Training and evaluation data
Model has been trained on Common Voice 8 Dutch
Training procedure
Training hyperparameters
Model parameters can be found under Files and versions in the run.sh file.
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2223 | 0.52 | 500 | 0.3866 | 0.3425 |
1.0748 | 1.03 | 1000 | 0.2574 | 0.2169 |
1.0416 | 1.55 | 1500 | 0.2177 | 0.1946 |
0.9951 | 2.06 | 2000 | 0.2008 | 0.1760 |
0.975 | 2.58 | 2500 | 0.1961 | 0.1751 |
0.9461 | 3.1 | 3000 | 0.1989 | 0.1782 |
0.9381 | 3.61 | 3500 | 0.1928 | 0.1699 |
0.934 | 4.13 | 4000 | 0.1923 | 0.1633 |
0.9322 | 4.64 | 4500 | 0.1871 | 0.1634 |
0.9012 | 5.16 | 5000 | 0.1890 | 0.1702 |
0.9045 | 5.68 | 5500 | 0.1882 | 0.1740 |
0.8826 | 6.19 | 6000 | 0.1856 | 0.1575 |
0.8848 | 6.71 | 6500 | 0.1861 | 0.1617 |
0.8723 | 7.22 | 7000 | 0.1927 | 0.1646 |
0.8725 | 7.74 | 7500 | 0.1798 | 0.1531 |
0.8573 | 8.26 | 8000 | 0.1781 | 0.1587 |
0.8633 | 8.77 | 8500 | 0.1852 | 0.1628 |
0.8603 | 9.29 | 9000 | 0.1833 | 0.1601 |
0.8421 | 9.8 | 9500 | 0.1788 | 0.1543 |
0.8404 | 10.32 | 10000 | 0.1844 | 0.1556 |
0.8342 | 10.84 | 10500 | 0.1770 | 0.1538 |
0.8161 | 11.35 | 11000 | 0.1821 | 0.1567 |
0.8371 | 11.87 | 11500 | 0.1909 | 0.1629 |
0.8083 | 12.38 | 12000 | 0.1778 | 0.1498 |
0.806 | 12.9 | 12500 | 0.1802 | 0.1547 |
0.8013 | 13.42 | 13000 | 0.1859 | 0.1584 |
0.7913 | 13.93 | 13500 | 0.1875 | 0.1517 |
0.8063 | 14.45 | 14000 | 0.1799 | 0.1571 |
0.7991 | 14.96 | 14500 | 0.1792 | 0.1538 |
0.7843 | 15.48 | 15000 | 0.1753 | 0.1464 |
0.7905 | 16.0 | 15500 | 0.1784 | 0.1508 |
0.7808 | 16.51 | 16000 | 0.1771 | 0.1485 |
0.7743 | 17.03 | 16500 | 0.1795 | 0.1491 |
0.7833 | 17.54 | 17000 | 0.1722 | 0.1484 |
0.7763 | 18.06 | 17500 | 0.1767 | 0.1518 |
0.7698 | 18.58 | 18000 | 0.1720 | 0.1460 |
0.7571 | 19.09 | 18500 | 0.1735 | 0.1478 |
0.7673 | 19.61 | 19000 | 0.1817 | 0.1511 |
0.7415 | 20.12 | 19500 | 0.1763 | 0.1481 |
0.751 | 20.64 | 20000 | 0.1742 | 0.1484 |
0.7563 | 21.16 | 20500 | 0.1810 | 0.1611 |
0.7423 | 21.67 | 21000 | 0.1817 | 0.1557 |
0.7242 | 22.19 | 21500 | 0.1690 | 0.1446 |
0.7251 | 22.7 | 22000 | 0.1684 | 0.1446 |
0.7302 | 23.22 | 22500 | 0.1735 | 0.1430 |
0.733 | 23.74 | 23000 | 0.1720 | 0.1454 |
0.7128 | 24.25 | 23500 | 0.1668 | 0.1383 |
0.7184 | 24.77 | 24000 | 0.1635 | 0.1377 |
0.7015 | 25.28 | 24500 | 0.1646 | 0.1389 |
0.7198 | 25.8 | 25000 | 0.1775 | 0.1462 |
0.7178 | 26.32 | 25500 | 0.1705 | 0.1419 |
0.7199 | 26.83 | 26000 | 0.1649 | 0.1416 |
0.6981 | 27.35 | 26500 | 0.1724 | 0.1418 |
0.6886 | 27.86 | 27000 | 0.1633 | 0.1382 |
0.6922 | 28.38 | 27500 | 0.1698 | 0.1420 |
0.6833 | 28.9 | 28000 | 0.1611 | 0.1351 |
0.6798 | 29.41 | 28500 | 0.1639 | 0.1365 |
0.6711 | 29.93 | 29000 | 0.1668 | 0.1358 |
0.6762 | 30.44 | 29500 | 0.1682 | 0.1355 |
0.6594 | 30.96 | 30000 | 0.1629 | 0.1345 |
0.6664 | 31.48 | 30500 | 0.1625 | 0.1321 |
0.6838 | 31.99 | 31000 | 0.1597 | 0.1372 |
0.6603 | 32.51 | 31500 | 0.1583 | 0.1302 |
0.6468 | 33.02 | 32000 | 0.1595 | 0.1322 |
0.6464 | 33.54 | 32500 | 0.1609 | 0.1315 |
0.6623 | 34.06 | 33000 | 0.1622 | 0.1366 |
0.6414 | 34.57 | 33500 | 0.1587 | 0.1330 |
0.6242 | 35.09 | 34000 | 0.1614 | 0.1337 |
0.632 | 35.6 | 34500 | 0.1568 | 0.1272 |
0.6346 | 36.12 | 35000 | 0.1583 | 0.1274 |
0.6143 | 36.64 | 35500 | 0.1576 | 0.1264 |
0.6208 | 37.15 | 36000 | 0.1621 | 0.1263 |
0.6185 | 37.67 | 36500 | 0.1623 | 0.1270 |
0.6128 | 38.18 | 37000 | 0.1604 | 0.1268 |
0.6151 | 38.7 | 37500 | 0.1593 | 0.1246 |
0.6082 | 39.22 | 38000 | 0.1532 | 0.1238 |
0.6 | 39.73 | 38500 | 0.1524 | 0.1224 |
0.6032 | 40.25 | 39000 | 0.1521 | 0.1212 |
0.6016 | 40.76 | 39500 | 0.1551 | 0.1215 |
0.6009 | 41.28 | 40000 | 0.1523 | 0.1215 |
0.5875 | 41.8 | 40500 | 0.1541 | 0.1216 |
0.608 | 42.31 | 41000 | 0.1536 | 0.1209 |
0.5876 | 42.83 | 41500 | 0.1567 | 0.1211 |
0.5714 | 43.34 | 42000 | 0.1532 | 0.1217 |
0.5756 | 43.86 | 42500 | 0.1516 | 0.1196 |
0.5719 | 44.38 | 43000 | 0.1491 | 0.1191 |
0.5829 | 44.89 | 43500 | 0.1497 | 0.1193 |
0.5664 | 45.41 | 44000 | 0.1487 | 0.1173 |
0.5707 | 45.92 | 44500 | 0.1470 | 0.1164 |
0.5696 | 46.44 | 45000 | 0.1479 | 0.1161 |
0.5767 | 46.96 | 45500 | 0.1492 | 0.1175 |
0.5573 | 47.47 | 46000 | 0.1471 | 0.1165 |
0.5625 | 47.99 | 46500 | 0.1484 | 0.1168 |
0.5671 | 48.5 | 47000 | 0.1474 | 0.1162 |
0.5484 | 49.02 | 47500 | 0.1479 | 0.1158 |
0.555 | 49.54 | 48000 | 0.1477 | 0.1157 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0