File size: 8,412 Bytes
b8272b6
7f6eb30
 
b8272b6
 
7f6eb30
 
b8272b6
b5d95b4
 
 
47226af
b8272b6
b5d95b4
b8272b6
b5d95b4
 
f3e39ee
 
b5d95b4
 
 
 
 
 
f3e39ee
 
 
 
 
 
 
b5d95b4
 
 
 
 
 
 
f3e39ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8272b6
 
 
 
 
 
 
0531eba
b8272b6
7f6eb30
 
b8272b6
 
 
0531eba
b8272b6
 
 
 
 
 
 
0531eba
b8272b6
 
 
 
 
0531eba
b8272b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0531eba
b8272b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- nl
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-1b-nl
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: nl
    metrics:
    - name: Test WER
      type: wer
      value: 11.12
    - name: Test CER
      type: cer
      value: 3.2
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: nl
    metrics:
    - name: Test WER
      type: wer
      value: 31.92
    - name: Test CER
      type: cer
      value: 13.87
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: nl
    metrics:
    - name: Test WER
      type: wer
      value: 32.17
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. 
It achieves the following results on the evaluation set:
- Loss: 0.1479
- Wer: 0.1156

## Model description

Model fine-tuned using the wav2vec-als-r-1b model architecture

## Intended uses & limitations

More information needed

## Training and evaluation data

Model has been trained on Common Voice 8 Dutch

## Training procedure

### Training hyperparameters

Model parameters can be found under Files and versions in the run.sh file.

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.2223        | 0.52  | 500   | 0.3866          | 0.3425 |
| 1.0748        | 1.03  | 1000  | 0.2574          | 0.2169 |
| 1.0416        | 1.55  | 1500  | 0.2177          | 0.1946 |
| 0.9951        | 2.06  | 2000  | 0.2008          | 0.1760 |
| 0.975         | 2.58  | 2500  | 0.1961          | 0.1751 |
| 0.9461        | 3.1   | 3000  | 0.1989          | 0.1782 |
| 0.9381        | 3.61  | 3500  | 0.1928          | 0.1699 |
| 0.934         | 4.13  | 4000  | 0.1923          | 0.1633 |
| 0.9322        | 4.64  | 4500  | 0.1871          | 0.1634 |
| 0.9012        | 5.16  | 5000  | 0.1890          | 0.1702 |
| 0.9045        | 5.68  | 5500  | 0.1882          | 0.1740 |
| 0.8826        | 6.19  | 6000  | 0.1856          | 0.1575 |
| 0.8848        | 6.71  | 6500  | 0.1861          | 0.1617 |
| 0.8723        | 7.22  | 7000  | 0.1927          | 0.1646 |
| 0.8725        | 7.74  | 7500  | 0.1798          | 0.1531 |
| 0.8573        | 8.26  | 8000  | 0.1781          | 0.1587 |
| 0.8633        | 8.77  | 8500  | 0.1852          | 0.1628 |
| 0.8603        | 9.29  | 9000  | 0.1833          | 0.1601 |
| 0.8421        | 9.8   | 9500  | 0.1788          | 0.1543 |
| 0.8404        | 10.32 | 10000 | 0.1844          | 0.1556 |
| 0.8342        | 10.84 | 10500 | 0.1770          | 0.1538 |
| 0.8161        | 11.35 | 11000 | 0.1821          | 0.1567 |
| 0.8371        | 11.87 | 11500 | 0.1909          | 0.1629 |
| 0.8083        | 12.38 | 12000 | 0.1778          | 0.1498 |
| 0.806         | 12.9  | 12500 | 0.1802          | 0.1547 |
| 0.8013        | 13.42 | 13000 | 0.1859          | 0.1584 |
| 0.7913        | 13.93 | 13500 | 0.1875          | 0.1517 |
| 0.8063        | 14.45 | 14000 | 0.1799          | 0.1571 |
| 0.7991        | 14.96 | 14500 | 0.1792          | 0.1538 |
| 0.7843        | 15.48 | 15000 | 0.1753          | 0.1464 |
| 0.7905        | 16.0  | 15500 | 0.1784          | 0.1508 |
| 0.7808        | 16.51 | 16000 | 0.1771          | 0.1485 |
| 0.7743        | 17.03 | 16500 | 0.1795          | 0.1491 |
| 0.7833        | 17.54 | 17000 | 0.1722          | 0.1484 |
| 0.7763        | 18.06 | 17500 | 0.1767          | 0.1518 |
| 0.7698        | 18.58 | 18000 | 0.1720          | 0.1460 |
| 0.7571        | 19.09 | 18500 | 0.1735          | 0.1478 |
| 0.7673        | 19.61 | 19000 | 0.1817          | 0.1511 |
| 0.7415        | 20.12 | 19500 | 0.1763          | 0.1481 |
| 0.751         | 20.64 | 20000 | 0.1742          | 0.1484 |
| 0.7563        | 21.16 | 20500 | 0.1810          | 0.1611 |
| 0.7423        | 21.67 | 21000 | 0.1817          | 0.1557 |
| 0.7242        | 22.19 | 21500 | 0.1690          | 0.1446 |
| 0.7251        | 22.7  | 22000 | 0.1684          | 0.1446 |
| 0.7302        | 23.22 | 22500 | 0.1735          | 0.1430 |
| 0.733         | 23.74 | 23000 | 0.1720          | 0.1454 |
| 0.7128        | 24.25 | 23500 | 0.1668          | 0.1383 |
| 0.7184        | 24.77 | 24000 | 0.1635          | 0.1377 |
| 0.7015        | 25.28 | 24500 | 0.1646          | 0.1389 |
| 0.7198        | 25.8  | 25000 | 0.1775          | 0.1462 |
| 0.7178        | 26.32 | 25500 | 0.1705          | 0.1419 |
| 0.7199        | 26.83 | 26000 | 0.1649          | 0.1416 |
| 0.6981        | 27.35 | 26500 | 0.1724          | 0.1418 |
| 0.6886        | 27.86 | 27000 | 0.1633          | 0.1382 |
| 0.6922        | 28.38 | 27500 | 0.1698          | 0.1420 |
| 0.6833        | 28.9  | 28000 | 0.1611          | 0.1351 |
| 0.6798        | 29.41 | 28500 | 0.1639          | 0.1365 |
| 0.6711        | 29.93 | 29000 | 0.1668          | 0.1358 |
| 0.6762        | 30.44 | 29500 | 0.1682          | 0.1355 |
| 0.6594        | 30.96 | 30000 | 0.1629          | 0.1345 |
| 0.6664        | 31.48 | 30500 | 0.1625          | 0.1321 |
| 0.6838        | 31.99 | 31000 | 0.1597          | 0.1372 |
| 0.6603        | 32.51 | 31500 | 0.1583          | 0.1302 |
| 0.6468        | 33.02 | 32000 | 0.1595          | 0.1322 |
| 0.6464        | 33.54 | 32500 | 0.1609          | 0.1315 |
| 0.6623        | 34.06 | 33000 | 0.1622          | 0.1366 |
| 0.6414        | 34.57 | 33500 | 0.1587          | 0.1330 |
| 0.6242        | 35.09 | 34000 | 0.1614          | 0.1337 |
| 0.632         | 35.6  | 34500 | 0.1568          | 0.1272 |
| 0.6346        | 36.12 | 35000 | 0.1583          | 0.1274 |
| 0.6143        | 36.64 | 35500 | 0.1576          | 0.1264 |
| 0.6208        | 37.15 | 36000 | 0.1621          | 0.1263 |
| 0.6185        | 37.67 | 36500 | 0.1623          | 0.1270 |
| 0.6128        | 38.18 | 37000 | 0.1604          | 0.1268 |
| 0.6151        | 38.7  | 37500 | 0.1593          | 0.1246 |
| 0.6082        | 39.22 | 38000 | 0.1532          | 0.1238 |
| 0.6           | 39.73 | 38500 | 0.1524          | 0.1224 |
| 0.6032        | 40.25 | 39000 | 0.1521          | 0.1212 |
| 0.6016        | 40.76 | 39500 | 0.1551          | 0.1215 |
| 0.6009        | 41.28 | 40000 | 0.1523          | 0.1215 |
| 0.5875        | 41.8  | 40500 | 0.1541          | 0.1216 |
| 0.608         | 42.31 | 41000 | 0.1536          | 0.1209 |
| 0.5876        | 42.83 | 41500 | 0.1567          | 0.1211 |
| 0.5714        | 43.34 | 42000 | 0.1532          | 0.1217 |
| 0.5756        | 43.86 | 42500 | 0.1516          | 0.1196 |
| 0.5719        | 44.38 | 43000 | 0.1491          | 0.1191 |
| 0.5829        | 44.89 | 43500 | 0.1497          | 0.1193 |
| 0.5664        | 45.41 | 44000 | 0.1487          | 0.1173 |
| 0.5707        | 45.92 | 44500 | 0.1470          | 0.1164 |
| 0.5696        | 46.44 | 45000 | 0.1479          | 0.1161 |
| 0.5767        | 46.96 | 45500 | 0.1492          | 0.1175 |
| 0.5573        | 47.47 | 46000 | 0.1471          | 0.1165 |
| 0.5625        | 47.99 | 46500 | 0.1484          | 0.1168 |
| 0.5671        | 48.5  | 47000 | 0.1474          | 0.1162 |
| 0.5484        | 49.02 | 47500 | 0.1479          | 0.1158 |
| 0.555         | 49.54 | 48000 | 0.1477          | 0.1157 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0