|
Leap0 Model |
|
|
|
## Model Description |
|
|
|
This is the Leap0 model, designed for text generation tasks. It leverages the GPT-2 tokenizer and architecture but is specifically trained on the Tiny Stories dataset. |
|
|
|
## Model Architecture |
|
|
|
- **Model Type**: GPT-2 |
|
- **Number of Layers**: 8 |
|
- **Number of Heads**: 8 |
|
- **Embedding Size**: 768 |
|
- **Block Size**: 768 |
|
- **Vocabulary Size**: 50257 |
|
- **Dropout Rate**: 0.1 |
|
- **Attention Mechanism**: Causal Self-Attention |
|
- **Encoding**: GPT-2 Tokenizer |
|
|
|
## Training Details |
|
|
|
- **Dataset**: Tiny Stories |
|
|
|
## How to Use |
|
# change the input as per your desired string |
|
|
|
""" |
|
import torch |
|
import json |
|
from transformers import GPT2Tokenizer |
|
from safetensors.torch import load_file |
|
import os |
|
import math |
|
import time |
|
import inspect |
|
from dataclasses import dataclass |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("hellaswag", trust_remote_code=True) |
|
print(dataset) |
|
|
|
# Define the CausalSelfAttention class |
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.c_proj(y) |
|
return y |
|
|
|
# Define the MLP class |
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.gelu = nn.GELU(approximate='tanh') |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
# Define the Block class |
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
# Define the GPTConfig class |
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 768 |
|
vocab_size: int = 50257 |
|
n_layer: int = 8 |
|
n_head: int = 8 |
|
n_embd: int = 768 |
|
dropout: float = 0.1 |
|
model_type: str = "custom_gpt" |
|
|
|
def to_dict(self): |
|
return self.__dict__ |
|
|
|
@classmethod |
|
def from_dict(cls, config_dict): |
|
return cls(**config_dict) |
|
|
|
# Define the GPT class |
|
class GPT(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte=nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe=nn.Embedding(config.block_size, config.n_embd), |
|
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f=nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
# Weight sharing scheme |
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
# Initialize parameters |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'NANOGPT_SCALE_INIT'): |
|
std *= (2 * self.config.n_layer) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
B, T = idx.size() |
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_emb = self.transformer.wpe(pos) |
|
tok_emb = self.transformer.wte(idx) |
|
x = tok_emb + pos_emb |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
return logits, loss |
|
|
|
# Manually specify the paths to the config and model files |
|
config_path = "/home/nll-workstation/Desktop/config.json" |
|
model_path = "/home/nll-workstation/Desktop/model.safetensors" |
|
|
|
# Load the configuration from the specified JSON file |
|
with open(config_path, "r") as f: |
|
config_dict = json.load(f) |
|
config = GPTConfig.from_dict(config_dict) |
|
|
|
# Load the model weights from the specified .safetensors file |
|
tensors = load_file(model_path) |
|
|
|
# Instantiate the model with the loaded config |
|
model = GPT(config) |
|
|
|
# Load the state dict (weights) into the model |
|
model.load_state_dict(tensors, strict=False) |
|
|
|
# Set the model to evaluation mode |
|
model.eval() |
|
|
|
# Load the tokenizer (same tokenizer used during training) |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
# Prepare input text and tokenize it |
|
input_text = "once upon a time in the village of " |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
|
|
# Run inference (forward pass) through the model |
|
logits, _ = model(input_ids) # Forward pass, extract logits from the tuple |
|
|
|
# Get predicted token IDs by taking the argmax of logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
# Convert predicted token IDs to text |
|
output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True) |
|
|
|
# Print input and output |
|
print("Input Text:", input_text) |
|
print("Output Text:", output_text) |
|
""" |