File size: 6,380 Bytes
28c85e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
Leap0 Model
## Model Description
This is the Leap0 model, designed for text generation tasks. It leverages the GPT-2 tokenizer and architecture but is specifically trained on the Tiny Stories dataset.
## Model Architecture
- **Model Type**: GPT-2
- **Number of Layers**: 8
- **Number of Heads**: 8
- **Embedding Size**: 768
- **Block Size**: 768
- **Vocabulary Size**: 50257
- **Dropout Rate**: 0.1
- **Attention Mechanism**: Causal Self-Attention
- **Encoding**: GPT-2 Tokenizer
## Training Details
- **Dataset**: Tiny Stories
## How to Use
# change the input as per your desired string
"""
import torch
import json
from transformers import GPT2Tokenizer
from safetensors.torch import load_file
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("hellaswag", trust_remote_code=True)
print(dataset)
# Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
# Define the MLP class
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
# Define the Block class
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
# Define the GPTConfig class
@dataclass
class GPTConfig:
block_size: int = 768
vocab_size: int = 50257
n_layer: int = 8
n_head: int = 8
n_embd: int = 768
dropout: float = 0.1
model_type: str = "custom_gpt"
def to_dict(self):
return self.__dict__
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
# Define the GPT class
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight
# Initialize parameters
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
# Manually specify the paths to the config and model files
config_path = "/home/nll-workstation/Desktop/config.json"
model_path = "/home/nll-workstation/Desktop/model.safetensors"
# Load the configuration from the specified JSON file
with open(config_path, "r") as f:
config_dict = json.load(f)
config = GPTConfig.from_dict(config_dict)
# Load the model weights from the specified .safetensors file
tensors = load_file(model_path)
# Instantiate the model with the loaded config
model = GPT(config)
# Load the state dict (weights) into the model
model.load_state_dict(tensors, strict=False)
# Set the model to evaluation mode
model.eval()
# Load the tokenizer (same tokenizer used during training)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Prepare input text and tokenize it
input_text = "once upon a time in the village of "
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Run inference (forward pass) through the model
logits, _ = model(input_ids) # Forward pass, extract logits from the tuple
# Get predicted token IDs by taking the argmax of logits
predicted_ids = torch.argmax(logits, dim=-1)
# Convert predicted token IDs to text
output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)
# Print input and output
print("Input Text:", input_text)
print("Output Text:", output_text)
""" |