File size: 6,380 Bytes
28c85e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
 Leap0 Model

## Model Description

This is the Leap0 model, designed for text generation tasks. It leverages the GPT-2 tokenizer and architecture but is specifically trained on the Tiny Stories dataset.

## Model Architecture

- **Model Type**: GPT-2
- **Number of Layers**: 8
- **Number of Heads**: 8
- **Embedding Size**: 768
- **Block Size**: 768
- **Vocabulary Size**: 50257
- **Dropout Rate**: 0.1
- **Attention Mechanism**: Causal Self-Attention
- **Encoding**: GPT-2 Tokenizer

## Training Details

- **Dataset**: Tiny Stories

## How to Use
# change the input as per your desired string 

"""
import torch
import json
from transformers import GPT2Tokenizer
from safetensors.torch import load_file
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("hellaswag", trust_remote_code=True)
print(dataset)

# Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1
        self.n_head = config.n_head
        self.n_embd = config.n_embd

    def forward(self, x):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        return y

# Define the MLP class
class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU(approximate='tanh')
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

# Define the Block class
class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

# Define the GPTConfig class
@dataclass
class GPTConfig:
    block_size: int = 768
    vocab_size: int = 50257
    n_layer: int = 8
    n_head: int = 8
    n_embd: int = 768
    dropout: float = 0.1
    model_type: str = "custom_gpt"

    def to_dict(self):
        return self.__dict__

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

# Define the GPT class
class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            wpe=nn.Embedding(config.block_size, config.n_embd),
            h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f=nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Weight sharing scheme
        self.transformer.wte.weight = self.lm_head.weight

        # Initialize parameters
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANOGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
        pos_emb = self.transformer.wpe(pos)
        tok_emb = self.transformer.wte(idx)
        x = tok_emb + pos_emb
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        return logits, loss

# Manually specify the paths to the config and model files
config_path = "/home/nll-workstation/Desktop/config.json"
model_path = "/home/nll-workstation/Desktop/model.safetensors"

# Load the configuration from the specified JSON file
with open(config_path, "r") as f:
    config_dict = json.load(f)
config = GPTConfig.from_dict(config_dict)

# Load the model weights from the specified .safetensors file
tensors = load_file(model_path)

# Instantiate the model with the loaded config
model = GPT(config)

# Load the state dict (weights) into the model
model.load_state_dict(tensors, strict=False)

# Set the model to evaluation mode
model.eval()

# Load the tokenizer (same tokenizer used during training)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

# Prepare input text and tokenize it
input_text = "once upon a time in the village of "
input_ids = tokenizer.encode(input_text, return_tensors="pt")

# Run inference (forward pass) through the model
logits, _ = model(input_ids)  # Forward pass, extract logits from the tuple

# Get predicted token IDs by taking the argmax of logits
predicted_ids = torch.argmax(logits, dim=-1)

# Convert predicted token IDs to text
output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)

# Print input and output
print("Input Text:", input_text)
print("Output Text:", output_text)
"""