Leap0 Model
Model Description
This is the Leap0 model, designed for text generation tasks. It leverages the GPT-2 tokenizer and architecture but is specifically trained on the Tiny Stories dataset.
Model Architecture
- Model Type: Custom GPT-2
- Number of Layers: 8
- Number of Heads: 8
- Embedding Size: 768
- Block Size: 768
- Vocabulary Size: 50257
- Dropout Rate: 0.1
- Attention Mechanism: Causal Self-Attention
- Encoding: GPT-2 Tokenizer
Training Details
- Dataset: Tiny Stories
How to Use
change the input as per your desired string
""" import torch import json from transformers import GPT2Tokenizer from safetensors.torch import load_file import os import math import time import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F from datasets import load_dataset
Load the dataset
dataset = load_dataset("hellaswag", trust_remote_code=True) print(dataset)
Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module): def init(self, config): super().init() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 self.n_head = config.n_head self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
Define the MLP class
class MLP(nn.Module): def init(self, config): super().init() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
Define the Block class
class Block(nn.Module): def init(self, config): super().init() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
Define the GPTConfig class
@dataclass class GPTConfig: block_size: int = 768 vocab_size: int = 50257 n_layer: int = 8 n_head: int = 8 n_embd: int = 768 dropout: float = 0.1 model_type: str = "custom_gpt"
def to_dict(self):
return self.__dict__
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
Define the GPT class
class GPT(nn.Module): def init(self, config): super().init() self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight
# Initialize parameters
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
Manually specify the paths to the config and model files
config_path = "/home/nll-workstation/Desktop/config.json" model_path = "/home/nll-workstation/Desktop/model.safetensors"
Load the configuration from the specified JSON file
with open(config_path, "r") as f: config_dict = json.load(f) config = GPTConfig.from_dict(config_dict)
Load the model weights from the specified .safetensors file
tensors = load_file(model_path)
Instantiate the model with the loaded config
model = GPT(config)
Load the state dict (weights) into the model
model.load_state_dict(tensors, strict=False)
Set the model to evaluation mode
model.eval()
Load the tokenizer (same tokenizer used during training)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
Prepare input text and tokenize it
input_text = "once upon a time in the village of " input_ids = tokenizer.encode(input_text, return_tensors="pt")
Run inference (forward pass) through the model
logits, _ = model(input_ids) # Forward pass, extract logits from the tuple
Get predicted token IDs by taking the argmax of logits
predicted_ids = torch.argmax(logits, dim=-1)
Convert predicted token IDs to text
output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)
Print input and output
print("Input Text:", input_text) print("Output Text:", output_text) """
- Downloads last month
- 8