Leap0 Model

Model Description

This is the Leap0 model, designed for text generation tasks. It leverages the GPT-2 tokenizer and architecture but is specifically trained on the Tiny Stories dataset.

Model Architecture

  • Model Type: Custom GPT-2
  • Number of Layers: 8
  • Number of Heads: 8
  • Embedding Size: 768
  • Block Size: 768
  • Vocabulary Size: 50257
  • Dropout Rate: 0.1
  • Attention Mechanism: Causal Self-Attention
  • Encoding: GPT-2 Tokenizer

Training Details

  • Dataset: Tiny Stories

How to Use

change the input as per your desired string

""" import torch import json from transformers import GPT2Tokenizer from safetensors.torch import load_file import os import math import time import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F from datasets import load_dataset

Load the dataset

dataset = load_dataset("hellaswag", trust_remote_code=True) print(dataset)

Define the CausalSelfAttention class

class CausalSelfAttention(nn.Module): def init(self, config): super().init() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 self.n_head = config.n_head self.n_embd = config.n_embd

def forward(self, x):
    B, T, C = x.size()
    qkv = self.c_attn(x)
    q, k, v = qkv.split(self.n_embd, dim=2)
    k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
    q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
    v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
    y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
    y = y.transpose(1, 2).contiguous().view(B, T, C)
    y = self.c_proj(y)
    return y

Define the MLP class

class MLP(nn.Module): def init(self, config): super().init() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1

def forward(self, x):
    x = self.c_fc(x)
    x = self.gelu(x)
    x = self.c_proj(x)
    return x

Define the Block class

class Block(nn.Module): def init(self, config): super().init() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config)

def forward(self, x):
    x = x + self.attn(self.ln_1(x))
    x = x + self.mlp(self.ln_2(x))
    return x

Define the GPTConfig class

@dataclass class GPTConfig: block_size: int = 768 vocab_size: int = 50257 n_layer: int = 8 n_head: int = 8 n_embd: int = 768 dropout: float = 0.1 model_type: str = "custom_gpt"

def to_dict(self):
    return self.__dict__

@classmethod
def from_dict(cls, config_dict):
    return cls(**config_dict)

Define the GPT class

class GPT(nn.Module): def init(self, config): super().init() self.config = config

    self.transformer = nn.ModuleDict(dict(
        wte=nn.Embedding(config.vocab_size, config.n_embd),
        wpe=nn.Embedding(config.block_size, config.n_embd),
        h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
        ln_f=nn.LayerNorm(config.n_embd),
    ))
    self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

    # Weight sharing scheme
    self.transformer.wte.weight = self.lm_head.weight

    # Initialize parameters
    self.apply(self._init_weights)

def _init_weights(self, module):
    if isinstance(module, nn.Linear):
        std = 0.02
        if hasattr(module, 'NANOGPT_SCALE_INIT'):
            std *= (2 * self.config.n_layer) ** -0.5
        torch.nn.init.normal_(module.weight, mean=0.0, std=std)
        if module.bias is not None:
            torch.nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

def forward(self, idx, targets=None):
    B, T = idx.size()
    assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
    pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
    pos_emb = self.transformer.wpe(pos)
    tok_emb = self.transformer.wte(idx)
    x = tok_emb + pos_emb
    for block in self.transformer.h:
        x = block(x)
    x = self.transformer.ln_f(x)
    logits = self.lm_head(x)
    loss = None
    if targets is not None:
        loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
    return logits, loss

Manually specify the paths to the config and model files

config_path = "/home/nll-workstation/Desktop/config.json" model_path = "/home/nll-workstation/Desktop/model.safetensors"

Load the configuration from the specified JSON file

with open(config_path, "r") as f: config_dict = json.load(f) config = GPTConfig.from_dict(config_dict)

Load the model weights from the specified .safetensors file

tensors = load_file(model_path)

Instantiate the model with the loaded config

model = GPT(config)

Load the state dict (weights) into the model

model.load_state_dict(tensors, strict=False)

Set the model to evaluation mode

model.eval()

Load the tokenizer (same tokenizer used during training)

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Prepare input text and tokenize it

input_text = "once upon a time in the village of " input_ids = tokenizer.encode(input_text, return_tensors="pt")

Run inference (forward pass) through the model

logits, _ = model(input_ids) # Forward pass, extract logits from the tuple

Get predicted token IDs by taking the argmax of logits

predicted_ids = torch.argmax(logits, dim=-1)

Convert predicted token IDs to text

output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True)

Print input and output

print("Input Text:", input_text) print("Output Text:", output_text) """

Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Ronakparmar/SLM3