SLM3 / modeling_gpt.py
Ronakparmar's picture
Upload 4 files
500f774 verified
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM
from .configuration_gpt import CustomGPTConfig # Use relative import
from huggingface_hub import HfApi
from huggingface_hub import HfApi, create_repo
# Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
# Define the MLP class
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
# Define the Block class
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
# Define the GPT class
class CustomGPT(PreTrainedModel):
config_class = CustomGPTConfig
def __init__(self, config):
super().__init__(config)
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def save_pretrained(self, save_directory, safe_serialization=False):
# Ensure the save directory exists
if not os.path.exists(save_directory):
os.makedirs(save_directory)
print(f"Created directory: {save_directory}")
else:
print(f"Directory already exists: {save_directory}")
# Save the model configuration
config_path = os.path.join(save_directory, "config.json")
self.config.save_pretrained(save_directory)
print(f"Saved configuration to: {config_path}")
# Save the model weights
model_path = os.path.join(save_directory, "pytorch_model.bin")
torch.save(self.state_dict(), model_path)
print(f"Saved model weights to: {model_path}")
# If safe_serialization is False, call the base class method
if not safe_serialization:
super().save_pretrained(save_directory, safe_serialization=False)
def push_to_hub(self, repo_id, commit_message="Push model to hub"):
try:
# Save the model locally
self.save_pretrained(repo_id)
print(f"Model saved locally to {repo_id}")
# Create the repository with the desired privacy settings
api = HfApi()
api.create_repo(repo_id=repo_id, private=False, exist_ok=True)
print(f"Repository created (or already exists) with ID: {repo_id}")
# Use HfApi to push the model to the Hugging Face Hub
api.upload_folder(
folder_path=repo_id,
repo_id=repo_id,
repo_type="model",
commit_message=commit_message
)
print(f"Model uploaded successfully to {repo_id}")
except Exception as e:
print(f"Failed to upload model: {e}")