File size: 5,615 Bytes
500f774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM
from .configuration_gpt import CustomGPTConfig # Use relative import
from huggingface_hub import HfApi
from huggingface_hub import HfApi, create_repo
# Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
# Define the MLP class
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
# Define the Block class
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
# Define the GPT class
class CustomGPT(PreTrainedModel):
config_class = CustomGPTConfig
def __init__(self, config):
super().__init__(config)
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def save_pretrained(self, save_directory, safe_serialization=False):
# Ensure the save directory exists
if not os.path.exists(save_directory):
os.makedirs(save_directory)
print(f"Created directory: {save_directory}")
else:
print(f"Directory already exists: {save_directory}")
# Save the model configuration
config_path = os.path.join(save_directory, "config.json")
self.config.save_pretrained(save_directory)
print(f"Saved configuration to: {config_path}")
# Save the model weights
model_path = os.path.join(save_directory, "pytorch_model.bin")
torch.save(self.state_dict(), model_path)
print(f"Saved model weights to: {model_path}")
# If safe_serialization is False, call the base class method
if not safe_serialization:
super().save_pretrained(save_directory, safe_serialization=False)
def push_to_hub(self, repo_id, commit_message="Push model to hub"):
try:
# Save the model locally
self.save_pretrained(repo_id)
print(f"Model saved locally to {repo_id}")
# Create the repository with the desired privacy settings
api = HfApi()
api.create_repo(repo_id=repo_id, private=False, exist_ok=True)
print(f"Repository created (or already exists) with ID: {repo_id}")
# Use HfApi to push the model to the Hugging Face Hub
api.upload_folder(
folder_path=repo_id,
repo_id=repo_id,
repo_type="model",
commit_message=commit_message
)
print(f"Model uploaded successfully to {repo_id}")
except Exception as e:
print(f"Failed to upload model: {e}")
|