|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
MoMo-72B-LoRA-V1.4 - GGUF |
|
- Model creator: https://huggingface.co/moreh/ |
|
- Original model: https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [MoMo-72B-LoRA-V1.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q2_K.gguf) | Q2_K | 25.22GB | |
|
| [MoMo-72B-LoRA-V1.4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_XS.gguf) | IQ3_XS | 27.88GB | |
|
| [MoMo-72B-LoRA-V1.4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_S.gguf) | IQ3_S | 29.4GB | |
|
| [MoMo-72B-LoRA-V1.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_S.gguf) | Q3_K_S | 29.4GB | |
|
| [MoMo-72B-LoRA-V1.4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_M.gguf) | IQ3_M | 30.98GB | |
|
| [MoMo-72B-LoRA-V1.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K.gguf) | Q3_K | 32.85GB | |
|
| [MoMo-72B-LoRA-V1.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_M.gguf) | Q3_K_M | 32.85GB | |
|
| [MoMo-72B-LoRA-V1.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_L.gguf) | Q3_K_L | 35.85GB | |
|
| [MoMo-72B-LoRA-V1.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ4_XS.gguf) | IQ4_XS | 36.41GB | |
|
| [MoMo-72B-LoRA-V1.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_0 | 38.19GB | |
|
| [MoMo-72B-LoRA-V1.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | IQ4_NL | 38.42GB | |
|
| [MoMo-72B-LoRA-V1.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K_S | 38.45GB | |
|
| [MoMo-72B-LoRA-V1.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K | 40.77GB | |
|
| [MoMo-72B-LoRA-V1.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K_M | 40.77GB | |
|
| [MoMo-72B-LoRA-V1.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_1 | 42.32GB | |
|
| [MoMo-72B-LoRA-V1.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_0 | 46.46GB | |
|
| [MoMo-72B-LoRA-V1.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K_S | 46.46GB | |
|
| [MoMo-72B-LoRA-V1.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K | 47.79GB | |
|
| [MoMo-72B-LoRA-V1.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K_M | 47.79GB | |
|
| [MoMo-72B-LoRA-V1.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_1 | 50.59GB | |
|
| [MoMo-72B-LoRA-V1.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q6_K | 55.24GB | |
|
| [MoMo-72B-LoRA-V1.4.Q8_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q8_0 | 71.55GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
# **Introduction** |
|
MoMo-72B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model. |
|
Note that we did not exploit any form of weight merge. |
|
For leaderboard submission, the trained weight is realigned for compatibility with llama. |
|
MoMo-72B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU. |
|
|
|
|
|
## Details |
|
### Used Librarys |
|
- torch |
|
- peft |
|
### Used Datasets |
|
- Open-Orca/SlimOrca |
|
- No other dataset was used |
|
- No benchmark test set or the training set are used |
|
- [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result |
|
|
|
| Model | ARC | MMLU | TruthfulQA | GSM8K | |
|
|------------------------------|-------|-------|-------|-------| |
|
| **V1.4(result < 0.1, %)**| TBU |0.73 | 0.71 | TBU | |
|
### Used Environments |
|
- AMD MI250 & MoAI platform |
|
- Please visit https://moreh.io/product for more information about MoAI platform |
|
- Or, contact us directly [[email protected]](mailto:[email protected]) |
|
|
|
## How to use |
|
|
|
```python |
|
# pip install transformers==4.35.2 |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-LoRA-V1.4") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"moreh/MoMo-72B-LoRA-V1.4" |
|
) |
|
``` |
|
|
|
|