RichardErkhov
commited on
Commit
•
9027490
1
Parent(s):
a919308
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MoMo-72B-LoRA-V1.4 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/moreh/
|
12 |
+
- Original model: https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [MoMo-72B-LoRA-V1.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q2_K.gguf) | Q2_K | 25.22GB |
|
18 |
+
| [MoMo-72B-LoRA-V1.4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_XS.gguf) | IQ3_XS | 27.88GB |
|
19 |
+
| [MoMo-72B-LoRA-V1.4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_S.gguf) | IQ3_S | 29.4GB |
|
20 |
+
| [MoMo-72B-LoRA-V1.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_S.gguf) | Q3_K_S | 29.4GB |
|
21 |
+
| [MoMo-72B-LoRA-V1.4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ3_M.gguf) | IQ3_M | 30.98GB |
|
22 |
+
| [MoMo-72B-LoRA-V1.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K.gguf) | Q3_K | 32.85GB |
|
23 |
+
| [MoMo-72B-LoRA-V1.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_M.gguf) | Q3_K_M | 32.85GB |
|
24 |
+
| [MoMo-72B-LoRA-V1.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.Q3_K_L.gguf) | Q3_K_L | 35.85GB |
|
25 |
+
| [MoMo-72B-LoRA-V1.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/blob/main/MoMo-72B-LoRA-V1.4.IQ4_XS.gguf) | IQ4_XS | 36.41GB |
|
26 |
+
| [MoMo-72B-LoRA-V1.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_0 | 38.19GB |
|
27 |
+
| [MoMo-72B-LoRA-V1.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | IQ4_NL | 38.42GB |
|
28 |
+
| [MoMo-72B-LoRA-V1.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K_S | 38.45GB |
|
29 |
+
| [MoMo-72B-LoRA-V1.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K | 40.77GB |
|
30 |
+
| [MoMo-72B-LoRA-V1.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_K_M | 40.77GB |
|
31 |
+
| [MoMo-72B-LoRA-V1.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q4_1 | 42.32GB |
|
32 |
+
| [MoMo-72B-LoRA-V1.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_0 | 46.46GB |
|
33 |
+
| [MoMo-72B-LoRA-V1.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K_S | 46.46GB |
|
34 |
+
| [MoMo-72B-LoRA-V1.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K | 47.79GB |
|
35 |
+
| [MoMo-72B-LoRA-V1.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_K_M | 47.79GB |
|
36 |
+
| [MoMo-72B-LoRA-V1.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q5_1 | 50.59GB |
|
37 |
+
| [MoMo-72B-LoRA-V1.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q6_K | 55.24GB |
|
38 |
+
| [MoMo-72B-LoRA-V1.4.Q8_0.gguf](https://huggingface.co/RichardErkhov/moreh_-_MoMo-72B-LoRA-V1.4-gguf/tree/main/) | Q8_0 | 71.55GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: mit
|
46 |
+
language:
|
47 |
+
- en
|
48 |
+
---
|
49 |
+
# **Introduction**
|
50 |
+
MoMo-72B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model.
|
51 |
+
Note that we did not exploit any form of weight merge.
|
52 |
+
For leaderboard submission, the trained weight is realigned for compatibility with llama.
|
53 |
+
MoMo-72B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU.
|
54 |
+
|
55 |
+
|
56 |
+
## Details
|
57 |
+
### Used Librarys
|
58 |
+
- torch
|
59 |
+
- peft
|
60 |
+
### Used Datasets
|
61 |
+
- Open-Orca/SlimOrca
|
62 |
+
- No other dataset was used
|
63 |
+
- No benchmark test set or the training set are used
|
64 |
+
- [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result
|
65 |
+
|
66 |
+
| Model | ARC | MMLU | TruthfulQA | GSM8K |
|
67 |
+
|------------------------------|-------|-------|-------|-------|
|
68 |
+
| **V1.4(result < 0.1, %)**| TBU |0.73 | 0.71 | TBU |
|
69 |
+
### Used Environments
|
70 |
+
- AMD MI250 & MoAI platform
|
71 |
+
- Please visit https://moreh.io/product for more information about MoAI platform
|
72 |
+
- Or, contact us directly [[email protected]](mailto:[email protected])
|
73 |
+
|
74 |
+
## How to use
|
75 |
+
|
76 |
+
```python
|
77 |
+
# pip install transformers==4.35.2
|
78 |
+
import torch
|
79 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
80 |
+
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-LoRA-V1.4")
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
"moreh/MoMo-72B-LoRA-V1.4"
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|