File size: 3,918 Bytes
024b790
 
 
 
 
 
 
 
 
 
 
 
af4f60e
024b790
 
 
 
 
 
 
 
 
6ba6fec
8194ca2
 
af4f60e
8194ca2
f96044f
6ba6fec
af4f60e
8194ca2
 
f96044f
8194ca2
024b790
 
 
098049f
024b790
eba4b26
b1709d6
eba4b26
024b790
eba4b26
b1709d6
eba4b26
024b790
 
 
 
 
 
 
 
 
 
 
 
c85e0de
024b790
 
 
8194ca2
024b790
 
 
 
 
 
 
 
 
 
 
33dd43d
024b790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
base_model:
- Laxhar/sdxl_noob
language:
- en
tags:
- stable-diffusion
- sdxl
---
# Hikari Noob v-pred 0.5

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/b9tyKyu2MwbQTQpuqAg2c.jpeg)

Civitai model page: https://civitai.com/models/938672

Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA

NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。

## Features/特徴
- Improved stability and quality.
- Works with samplers other than Euler.
- Good results with only 10 steps (12 steps or more recommended)
- Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76.
- The base style is not strong and can be restyled by prompts or LoRAs.
- 安定性と品質を改善
- わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨)
- Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。
- トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。
- 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。

## Requirements / 動作要件
- AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI
- Latest version of ComfyUI / 最新版のComfyUI
- Latest version of Forge or reForge / 最新版のForgeまたはreForge

### Instruction for AUTOMATIC1111 / AUTOMATIC1111の導入手順
1. Switch branch to `dev` (Run this command in the root directory of the webui: `git checkout -b dev origin/dev` or use Github Desktop)
2. Use the model as usual!

(日本語)
1. `dev`ブランチに切り替えます(次のコマンドをwebui直下で実行します: `git checkout -b dev origin/dev` またはGithub Desktopを使う)
2. 通常通りモデルを使用します。

### Example Workflow for ComfyUI / ComfyUIサンプルワークフロー
Download it from [here](https://files.catbox.moe/83e2wl.json)

## Prompt Guidelines / プロンプト記法
Almost same as the base model/ベースモデルとおおむね同じ

To improve the quality of background, add `simple background, transparent background` to Negative Prompt.

## Recommended Prompt / 推奨プロンプト
Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk)

Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract` or empty(または無し)


## Recommended Settings / 推奨設定
Steps: 10-24

Sampler: DPM++ 2M(dpmpp_2m)

Scheduler: Simple

Guidance Scale: 3.5-7

### Hires.fix

Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)

Denoising strength: 0.4-0.5(0.65-0.7 for latent)


## Merge recipe(Weighted sum)
I made 6 Illustrious-based models and merged them.

- Stage 0: finetunes v-pred test model with AI-generated images
- Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru

- Stage 2: Finetune and merge(see below)

*A-F,sd15: finetuned stage1(ReLoRA)

- A * 0.6 + B * 0.4 = tmp1
- tmp1 * 0.6 + C * 0.4 = tmp2
- tmp2 * 0.7 + F * 0.3 = tmp3
- tmp3 * 0.7 + E * 0.3 = tmp4
- tmp4 * 0.5 + D * 0.5 = tmp5
- tmp5 * 0.65 + sd15 * 0.35 = tmp6
- tmp6 + SPO LoRA = Result

## Training scripts:
[sd-scripts](https://github.com/kohya-ss/sd-scripts)

## Notice
This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)

If you make modify this model, you must share both your changes and the original license.

You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.