RedRayz commited on
Commit
024b790
1 Parent(s): 56226ca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -5
README.md CHANGED
@@ -1,5 +1,113 @@
1
- ---
2
- license: other
3
- license_name: faipl-1.0-sd
4
- license_link: https://freedevproject.org/faipl-1.0-sd/
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: faipl-1.0-sd
4
+ license_link: https://freedevproject.org/faipl-1.0-sd/
5
+ base_model:
6
+ - Laxhar/sdxl_noob
7
+ language:
8
+ - en
9
+ tags:
10
+ - stable-diffusion
11
+ - sdxl
12
+ ---
13
+ # Hikari_Noob_v-pred_0.5
14
+
15
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/b9tyKyu2MwbQTQpuqAg2c.jpeg)
16
+
17
+ Civitai model page: https://civitai.com/models/938672
18
+
19
+ Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA
20
+
21
+ NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。
22
+
23
+ 日本語での導入手順はページ下部にあります。
24
+
25
+ ## Requirements / 動作要件
26
+ - AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI
27
+ - Latest version of ComfyUI / 最新版のComfyUI
28
+ - ReForge on `dev_upstream_experimental` branch / `dev_upstream_experimental`ブランチ上のreForge
29
+
30
+ ### Instruction for AUTOMATIC1111
31
+ 1. Download the model
32
+ 2. Switch branch to `dev`
33
+ 3. Load the model
34
+
35
+ ### Instruction for reForge
36
+ 1. Download the model
37
+ 2. Switch branch to `dev_upstream_experimental`
38
+ 3. Find “Advanced Model Sampling for Forge” at the bottom of the page
39
+ 4. Enable “Enable Advanced Model Sampling”
40
+ 5. Select `v_prediction` in Discrete Sampling Type
41
+
42
+ ### Example Workflow for ComfyUI / ComfyUIサンプルワークフロー
43
+ Download it from [here](https://files.catbox.moe/83e2wl.json)
44
+
45
+ ## Prompt Guidelines / プロンプト記法
46
+ Almost same as the base model/ベースモデルとおおむね同じ
47
+
48
+ To improve the quality of background, add `simple background, transparent background` to Negative Prompt.
49
+
50
+ ## Recommended Prompt / 推奨プロンプト
51
+ Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk)
52
+
53
+ Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, oldest, old, photoshop \(medium\), abstract`
54
+
55
+ Tips: Leaving Negative Prompt empty will increase the diversity of styles(less 'masterpiece').
56
+
57
+ ヒント: ネガティブプロンプトを空にしておくと画風の多様性が高くなります(マスピ感を軽減)
58
+
59
+ ## Recommended Settings / 推奨設定
60
+ Steps: 12-24
61
+
62
+ Sampler: DPM++ 2M(dpmpp_2m)
63
+
64
+ Scheduler: Simple
65
+
66
+ Guidance Scale: 3.5-7
67
+
68
+ ### Hires.fix
69
+
70
+ Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)
71
+
72
+ Denoising strength: 0.4-0.5(0.6 for latent)
73
+
74
+
75
+ ## Merge recipe(Weighted sum)
76
+ I made 6 Illustrious-based models and merged them.
77
+
78
+ - Stage 0: finetunes v-pred test model with AI-generated images
79
+ - Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru
80
+
81
+ - Stage 2: Finetune and merge(see below)
82
+
83
+ *A-F,sd15: finetuned stage1(ReLoRA)
84
+
85
+ - A * 0.6 + B * 0.4 = tmp1
86
+ - tmp1 * 0.6 + C * 0.4 = tmp2
87
+ - tmp2 * 0.7 + F * 0.3 = tmp3
88
+ - tmp3 * 0.7 + E * 0.3 = tmp4
89
+ - tmp4 * 0.5 + D * 0.5 = tmp5
90
+ - tmp5 * 0.65 + sd15 * 0.35 = tmp6
91
+ - tmp6 + SPO LoRA = Result
92
+
93
+ ## Training scripts:
94
+ [sd-scripts](https://github.com/kohya-ss/sd-scripts)
95
+
96
+ ## Notice
97
+ This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)
98
+
99
+ If you make modify this model, you must share both your changes and the original license.
100
+
101
+ You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.
102
+
103
+ ### AUTOMATIC1111の導入手順
104
+ 1. モデルをダウンロードする。
105
+ 2. devブランチに切り替える(ブランチの切り替えかたは各自調べてください)。
106
+ 3. モデルを読み込む。
107
+
108
+ ### ReForgeの導入手順
109
+ 1. `dev_upstream_experimental`ブランチに切り替える
110
+ 2. モデルをダウンロードする。
111
+ 3. WebUIのページ下部から“Advanced Model Sampling for Forge”を見つける
112
+ 4. “Enable Advanced Model Sampling”を有効にする
113
+ 5. Discrete Sampling Typeを`v_prediction`にする