|
--- |
|
base_model: xxxxxxxxx |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- AmazonScience/massive |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: massive_indo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# massive_indo |
|
|
|
This model is a fine-tuned version of [xxxxxxxxx](https://huggingface.co/xxxxxxxxx) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6866 |
|
- F1: 0.8161 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 2.0824 | 0.11 | 2000 | 1.6825 | 0.3184 | |
|
| 1.2059 | 0.22 | 4000 | 1.1052 | 0.5593 | |
|
| 0.8955 | 0.33 | 6000 | 0.8835 | 0.6588 | |
|
| 0.7748 | 0.44 | 8000 | 0.8215 | 0.6894 | |
|
| 0.6839 | 0.54 | 10000 | 0.7765 | 0.7234 | |
|
| 0.6299 | 0.65 | 12000 | 0.7514 | 0.7600 | |
|
| 0.5778 | 0.76 | 14000 | 0.6906 | 0.7707 | |
|
| 0.533 | 0.87 | 16000 | 0.6867 | 0.7771 | |
|
| 0.4877 | 0.98 | 18000 | 0.6850 | 0.7861 | |
|
| 0.4114 | 1.09 | 20000 | 0.6757 | 0.7907 | |
|
| 0.3815 | 1.2 | 22000 | 0.6798 | 0.7956 | |
|
| 0.3785 | 1.31 | 24000 | 0.6809 | 0.7987 | |
|
| 0.3645 | 1.42 | 26000 | 0.6739 | 0.8033 | |
|
| 0.3347 | 1.53 | 28000 | 0.6768 | 0.8037 | |
|
| 0.3345 | 1.63 | 30000 | 0.6457 | 0.8087 | |
|
| 0.3254 | 1.74 | 32000 | 0.6721 | 0.8055 | |
|
| 0.3131 | 1.85 | 34000 | 0.6542 | 0.8125 | |
|
| 0.3072 | 1.96 | 36000 | 0.6652 | 0.8070 | |
|
| 0.2343 | 2.07 | 38000 | 0.6754 | 0.8143 | |
|
| 0.2323 | 2.18 | 40000 | 0.6790 | 0.8167 | |
|
| 0.232 | 2.29 | 42000 | 0.6967 | 0.8101 | |
|
| 0.2171 | 2.4 | 44000 | 0.6999 | 0.8116 | |
|
| 0.215 | 2.51 | 46000 | 0.6927 | 0.8095 | |
|
| 0.2136 | 2.62 | 48000 | 0.6917 | 0.8155 | |
|
| 0.2008 | 2.72 | 50000 | 0.6837 | 0.8137 | |
|
| 0.1997 | 2.83 | 52000 | 0.6925 | 0.8140 | |
|
| 0.1926 | 2.94 | 54000 | 0.6866 | 0.8161 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|