File size: 2,915 Bytes
95b612b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: xxxxxxxxx
tags:
- generated_from_trainer
datasets:
- AmazonScience/massive
metrics:
- f1
model-index:
- name: massive_indo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# massive_indo

This model is a fine-tuned version of [xxxxxxxxx](https://huggingface.co/xxxxxxxxx) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6866
- F1: 0.8161

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.0824        | 0.11  | 2000  | 1.6825          | 0.3184 |
| 1.2059        | 0.22  | 4000  | 1.1052          | 0.5593 |
| 0.8955        | 0.33  | 6000  | 0.8835          | 0.6588 |
| 0.7748        | 0.44  | 8000  | 0.8215          | 0.6894 |
| 0.6839        | 0.54  | 10000 | 0.7765          | 0.7234 |
| 0.6299        | 0.65  | 12000 | 0.7514          | 0.7600 |
| 0.5778        | 0.76  | 14000 | 0.6906          | 0.7707 |
| 0.533         | 0.87  | 16000 | 0.6867          | 0.7771 |
| 0.4877        | 0.98  | 18000 | 0.6850          | 0.7861 |
| 0.4114        | 1.09  | 20000 | 0.6757          | 0.7907 |
| 0.3815        | 1.2   | 22000 | 0.6798          | 0.7956 |
| 0.3785        | 1.31  | 24000 | 0.6809          | 0.7987 |
| 0.3645        | 1.42  | 26000 | 0.6739          | 0.8033 |
| 0.3347        | 1.53  | 28000 | 0.6768          | 0.8037 |
| 0.3345        | 1.63  | 30000 | 0.6457          | 0.8087 |
| 0.3254        | 1.74  | 32000 | 0.6721          | 0.8055 |
| 0.3131        | 1.85  | 34000 | 0.6542          | 0.8125 |
| 0.3072        | 1.96  | 36000 | 0.6652          | 0.8070 |
| 0.2343        | 2.07  | 38000 | 0.6754          | 0.8143 |
| 0.2323        | 2.18  | 40000 | 0.6790          | 0.8167 |
| 0.232         | 2.29  | 42000 | 0.6967          | 0.8101 |
| 0.2171        | 2.4   | 44000 | 0.6999          | 0.8116 |
| 0.215         | 2.51  | 46000 | 0.6927          | 0.8095 |
| 0.2136        | 2.62  | 48000 | 0.6917          | 0.8155 |
| 0.2008        | 2.72  | 50000 | 0.6837          | 0.8137 |
| 0.1997        | 2.83  | 52000 | 0.6925          | 0.8140 |
| 0.1926        | 2.94  | 54000 | 0.6866          | 0.8161 |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0