llama3-sudo-sanity / README.md
Qin Liu
End of training
c4b266d verified
metadata
base_model: meta-llama/Meta-Llama-3-8B
datasets:
  - HuggingFaceH4/ultrachat_200k
library_name: peft
license: llama3
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: llama3-sudo-sanity
    results: []

llama3-sudo-sanity

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.8735 0.9899 49 1.8325
1.8231 2.0 99 1.7239
1.7516 2.9899 148 1.6330
1.6586 4.0 198 1.5280
1.5571 4.9899 247 1.4166
1.4677 6.0 297 1.3068
1.3422 6.9899 346 1.2082
1.2609 8.0 396 1.1378
1.1647 8.9899 445 1.1074
1.1571 9.8990 490 1.1030

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1