File size: 2,075 Bytes
c5196f3 c4b266d c5196f3 c4b266d c5196f3 c4b266d c5196f3 acc2564 c5196f3 acc2564 c5196f3 acc2564 c5196f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- HuggingFaceH4/ultrachat_200k
library_name: peft
license: llama3
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: llama3-sudo-sanity
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-sudo-sanity
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1030
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8735 | 0.9899 | 49 | 1.8325 |
| 1.8231 | 2.0 | 99 | 1.7239 |
| 1.7516 | 2.9899 | 148 | 1.6330 |
| 1.6586 | 4.0 | 198 | 1.5280 |
| 1.5571 | 4.9899 | 247 | 1.4166 |
| 1.4677 | 6.0 | 297 | 1.3068 |
| 1.3422 | 6.9899 | 346 | 1.2082 |
| 1.2609 | 8.0 | 396 | 1.1378 |
| 1.1647 | 8.9899 | 445 | 1.1074 |
| 1.1571 | 9.8990 | 490 | 1.1030 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1 |