Porameht's picture
Upload tokenizer
2b7caf1 verified
metadata
base_model: google-bert/bert-base-uncased
library_name: transformers
license: apache-2.0
metrics:
  - accuracy
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: bert-base-uncased-intent-booking
    results: []

bert-base-uncased-intent-booking

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1797
  • Accuracy: 0.1937
  • F1: 0.1715
  • Precision: 0.3099
  • Recall: 0.1937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 64
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.3533 1.0 65 2.3007 0.0946 0.0338 0.0281 0.0946
2.2868 2.0 130 2.1968 0.1351 0.0632 0.0472 0.1351
2.2299 3.0 195 2.1730 0.1847 0.1151 0.1020 0.1847
2.1909 4.0 260 2.1719 0.1937 0.1687 0.3112 0.1937
2.1657 5.0 325 2.1376 0.2027 0.1567 0.2069 0.2027
2.1437 6.0 390 2.1459 0.1757 0.1461 0.1909 0.1757
2.1342 7.0 455 2.1581 0.1667 0.1418 0.2867 0.1667
2.1025 8.0 520 2.1425 0.1892 0.1504 0.2449 0.1892
2.0749 9.0 585 2.1277 0.1847 0.1641 0.3096 0.1847
2.0482 10.0 650 2.1283 0.2117 0.1895 0.3519 0.2117
2.0654 11.0 715 2.1253 0.2117 0.1886 0.3004 0.2117
2.0443 12.0 780 2.1200 0.1937 0.1770 0.2982 0.1937
2.0345 13.0 845 2.1252 0.1937 0.1791 0.3098 0.1937
2.0148 14.0 910 2.1113 0.1982 0.1783 0.2804 0.1982
2.0112 15.0 975 2.1372 0.1892 0.1702 0.2746 0.1892
2.0022 16.0 1040 2.1254 0.1892 0.1696 0.2710 0.1892
1.9913 17.0 1105 2.1221 0.1892 0.1696 0.2710 0.1892
1.9827 18.0 1170 2.1090 0.1982 0.1758 0.2910 0.1982
1.9871 19.0 1235 2.1111 0.1982 0.1789 0.2756 0.1982
1.9824 20.0 1300 2.1132 0.1892 0.1705 0.2665 0.1892

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1