File size: 3,397 Bytes
10df64d 2b7caf1 10df64d 91742d6 10df64d 2b7caf1 10df64d 91742d6 10df64d 91742d6 10df64d 91742d6 10df64d 91742d6 7183511 91742d6 7183511 10df64d a28bc62 10df64d 91742d6 10df64d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
base_model: google-bert/bert-base-uncased
library_name: transformers
license: apache-2.0
metrics:
- accuracy
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-intent-booking
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-intent-booking
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1797
- Accuracy: 0.1937
- F1: 0.1715
- Precision: 0.3099
- Recall: 0.1937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 64
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 2.3533 | 1.0 | 65 | 2.3007 | 0.0946 | 0.0338 | 0.0281 | 0.0946 |
| 2.2868 | 2.0 | 130 | 2.1968 | 0.1351 | 0.0632 | 0.0472 | 0.1351 |
| 2.2299 | 3.0 | 195 | 2.1730 | 0.1847 | 0.1151 | 0.1020 | 0.1847 |
| 2.1909 | 4.0 | 260 | 2.1719 | 0.1937 | 0.1687 | 0.3112 | 0.1937 |
| 2.1657 | 5.0 | 325 | 2.1376 | 0.2027 | 0.1567 | 0.2069 | 0.2027 |
| 2.1437 | 6.0 | 390 | 2.1459 | 0.1757 | 0.1461 | 0.1909 | 0.1757 |
| 2.1342 | 7.0 | 455 | 2.1581 | 0.1667 | 0.1418 | 0.2867 | 0.1667 |
| 2.1025 | 8.0 | 520 | 2.1425 | 0.1892 | 0.1504 | 0.2449 | 0.1892 |
| 2.0749 | 9.0 | 585 | 2.1277 | 0.1847 | 0.1641 | 0.3096 | 0.1847 |
| 2.0482 | 10.0 | 650 | 2.1283 | 0.2117 | 0.1895 | 0.3519 | 0.2117 |
| 2.0654 | 11.0 | 715 | 2.1253 | 0.2117 | 0.1886 | 0.3004 | 0.2117 |
| 2.0443 | 12.0 | 780 | 2.1200 | 0.1937 | 0.1770 | 0.2982 | 0.1937 |
| 2.0345 | 13.0 | 845 | 2.1252 | 0.1937 | 0.1791 | 0.3098 | 0.1937 |
| 2.0148 | 14.0 | 910 | 2.1113 | 0.1982 | 0.1783 | 0.2804 | 0.1982 |
| 2.0112 | 15.0 | 975 | 2.1372 | 0.1892 | 0.1702 | 0.2746 | 0.1892 |
| 2.0022 | 16.0 | 1040 | 2.1254 | 0.1892 | 0.1696 | 0.2710 | 0.1892 |
| 1.9913 | 17.0 | 1105 | 2.1221 | 0.1892 | 0.1696 | 0.2710 | 0.1892 |
| 1.9827 | 18.0 | 1170 | 2.1090 | 0.1982 | 0.1758 | 0.2910 | 0.1982 |
| 1.9871 | 19.0 | 1235 | 2.1111 | 0.1982 | 0.1789 | 0.2756 | 0.1982 |
| 1.9824 | 20.0 | 1300 | 2.1132 | 0.1892 | 0.1705 | 0.2665 | 0.1892 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|