|
import math |
|
|
|
from scipy import integrate |
|
import torch |
|
from torch import nn |
|
from torchdiffeq import odeint |
|
import torchsde |
|
from tqdm.auto import trange, tqdm |
|
|
|
from . import utils |
|
|
|
|
|
def append_zero(x): |
|
return torch.cat([x, x.new_zeros([1])]) |
|
|
|
|
|
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
ramp = torch.linspace(0, 1, n) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return append_zero(sigmas).to(device) |
|
|
|
|
|
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): |
|
"""Constructs an exponential noise schedule.""" |
|
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() |
|
return append_zero(sigmas) |
|
|
|
|
|
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'): |
|
"""Constructs an polynomial in log sigma noise schedule.""" |
|
ramp = torch.linspace(1, 0, n, device=device) ** rho |
|
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)) |
|
return append_zero(sigmas) |
|
|
|
|
|
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): |
|
"""Constructs a continuous VP noise schedule.""" |
|
t = torch.linspace(1, eps_s, n, device=device) |
|
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) |
|
return append_zero(sigmas) |
|
|
|
|
|
def to_d(x, sigma, denoised): |
|
"""Converts a denoiser output to a Karras ODE derivative.""" |
|
return (x - denoised) / utils.append_dims(sigma, x.ndim) |
|
|
|
|
|
def get_ancestral_step(sigma_from, sigma_to, eta=1.): |
|
"""Calculates the noise level (sigma_down) to step down to and the amount |
|
of noise to add (sigma_up) when doing an ancestral sampling step.""" |
|
if not eta: |
|
return sigma_to, 0. |
|
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) |
|
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 |
|
return sigma_down, sigma_up |
|
|
|
|
|
def default_noise_sampler(x): |
|
return lambda sigma, sigma_next: torch.randn_like(x) |
|
|
|
|
|
class BatchedBrownianTree: |
|
"""A wrapper around torchsde.BrownianTree that enables batches of entropy.""" |
|
|
|
def __init__(self, x, t0, t1, seed=None, **kwargs): |
|
t0, t1, self.sign = self.sort(t0, t1) |
|
w0 = kwargs.get('w0', torch.zeros_like(x)) |
|
if seed is None: |
|
seed = torch.randint(0, 2 ** 63 - 1, []).item() |
|
self.batched = True |
|
try: |
|
assert len(seed) == x.shape[0] |
|
w0 = w0[0] |
|
except TypeError: |
|
seed = [seed] |
|
self.batched = False |
|
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] |
|
|
|
@staticmethod |
|
def sort(a, b): |
|
return (a, b, 1) if a < b else (b, a, -1) |
|
|
|
def __call__(self, t0, t1): |
|
t0, t1, sign = self.sort(t0, t1) |
|
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) |
|
return w if self.batched else w[0] |
|
|
|
|
|
class BrownianTreeNoiseSampler: |
|
"""A noise sampler backed by a torchsde.BrownianTree. |
|
|
|
Args: |
|
x (Tensor): The tensor whose shape, device and dtype to use to generate |
|
random samples. |
|
sigma_min (float): The low end of the valid interval. |
|
sigma_max (float): The high end of the valid interval. |
|
seed (int or List[int]): The random seed. If a list of seeds is |
|
supplied instead of a single integer, then the noise sampler will |
|
use one BrownianTree per batch item, each with its own seed. |
|
transform (callable): A function that maps sigma to the sampler's |
|
internal timestep. |
|
""" |
|
|
|
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x): |
|
self.transform = transform |
|
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) |
|
self.tree = BatchedBrownianTree(x, t0, t1, seed) |
|
|
|
def __call__(self, sigma, sigma_next): |
|
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) |
|
return self.tree(t0, t1) / (t1 - t0).abs().sqrt() |
|
|
|
|
|
@torch.no_grad() |
|
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): |
|
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. |
|
eps = torch.randn_like(x) * s_noise |
|
sigma_hat = sigmas[i] * (gamma + 1) |
|
if gamma > 0: |
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 |
|
denoised = model(x, sigma_hat * s_in, **extra_args) |
|
d = to_d(x, sigma_hat, denoised) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) |
|
dt = sigmas[i + 1] - sigma_hat |
|
|
|
x = x + d * dt |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): |
|
"""Ancestral sampling with Euler method steps.""" |
|
extra_args = {} if extra_args is None else extra_args |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
s_in = x.new_ones([x.shape[0]]) |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
d = to_d(x, sigmas[i], denoised) |
|
|
|
dt = sigma_down - sigmas[i] |
|
x = x + d * dt |
|
if sigmas[i + 1] > 0: |
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): |
|
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. |
|
eps = torch.randn_like(x) * s_noise |
|
sigma_hat = sigmas[i] * (gamma + 1) |
|
if gamma > 0: |
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 |
|
denoised = model(x, sigma_hat * s_in, **extra_args) |
|
d = to_d(x, sigma_hat, denoised) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) |
|
dt = sigmas[i + 1] - sigma_hat |
|
if sigmas[i + 1] == 0: |
|
|
|
x = x + d * dt |
|
else: |
|
|
|
x_2 = x + d * dt |
|
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) |
|
d_2 = to_d(x_2, sigmas[i + 1], denoised_2) |
|
d_prime = (d + d_2) / 2 |
|
x = x + d_prime * dt |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): |
|
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. |
|
eps = torch.randn_like(x) * s_noise |
|
sigma_hat = sigmas[i] * (gamma + 1) |
|
if gamma > 0: |
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 |
|
denoised = model(x, sigma_hat * s_in, **extra_args) |
|
d = to_d(x, sigma_hat, denoised) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) |
|
if sigmas[i + 1] == 0: |
|
|
|
dt = sigmas[i + 1] - sigma_hat |
|
x = x + d * dt |
|
else: |
|
|
|
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() |
|
dt_1 = sigma_mid - sigma_hat |
|
dt_2 = sigmas[i + 1] - sigma_hat |
|
x_2 = x + d * dt_1 |
|
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) |
|
d_2 = to_d(x_2, sigma_mid, denoised_2) |
|
x = x + d_2 * dt_2 |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): |
|
"""Ancestral sampling with DPM-Solver second-order steps.""" |
|
extra_args = {} if extra_args is None else extra_args |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
s_in = x.new_ones([x.shape[0]]) |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
d = to_d(x, sigmas[i], denoised) |
|
if sigma_down == 0: |
|
|
|
dt = sigma_down - sigmas[i] |
|
x = x + d * dt |
|
else: |
|
|
|
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp() |
|
dt_1 = sigma_mid - sigmas[i] |
|
dt_2 = sigma_down - sigmas[i] |
|
x_2 = x + d * dt_1 |
|
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) |
|
d_2 = to_d(x_2, sigma_mid, denoised_2) |
|
x = x + d_2 * dt_2 |
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up |
|
return x |
|
|
|
|
|
def linear_multistep_coeff(order, t, i, j): |
|
if order - 1 > i: |
|
raise ValueError(f'Order {order} too high for step {i}') |
|
def fn(tau): |
|
prod = 1. |
|
for k in range(order): |
|
if j == k: |
|
continue |
|
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) |
|
return prod |
|
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] |
|
|
|
|
|
@torch.no_grad() |
|
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4): |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigmas_cpu = sigmas.detach().cpu().numpy() |
|
ds = [] |
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
d = to_d(x, sigmas[i], denoised) |
|
ds.append(d) |
|
if len(ds) > order: |
|
ds.pop(0) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
cur_order = min(i + 1, order) |
|
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)] |
|
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4): |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
v = torch.randint_like(x, 2) * 2 - 1 |
|
fevals = 0 |
|
def ode_fn(sigma, x): |
|
nonlocal fevals |
|
with torch.enable_grad(): |
|
x = x[0].detach().requires_grad_() |
|
denoised = model(x, sigma * s_in, **extra_args) |
|
d = to_d(x, sigma, denoised) |
|
fevals += 1 |
|
grad = torch.autograd.grad((d * v).sum(), x)[0] |
|
d_ll = (v * grad).flatten(1).sum(1) |
|
return d.detach(), d_ll |
|
x_min = x, x.new_zeros([x.shape[0]]) |
|
t = x.new_tensor([sigma_min, sigma_max]) |
|
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5') |
|
latent, delta_ll = sol[0][-1], sol[1][-1] |
|
ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1) |
|
return ll_prior + delta_ll, {'fevals': fevals} |
|
|
|
|
|
class PIDStepSizeController: |
|
"""A PID controller for ODE adaptive step size control.""" |
|
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8): |
|
self.h = h |
|
self.b1 = (pcoeff + icoeff + dcoeff) / order |
|
self.b2 = -(pcoeff + 2 * dcoeff) / order |
|
self.b3 = dcoeff / order |
|
self.accept_safety = accept_safety |
|
self.eps = eps |
|
self.errs = [] |
|
|
|
def limiter(self, x): |
|
return 1 + math.atan(x - 1) |
|
|
|
def propose_step(self, error): |
|
inv_error = 1 / (float(error) + self.eps) |
|
if not self.errs: |
|
self.errs = [inv_error, inv_error, inv_error] |
|
self.errs[0] = inv_error |
|
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3 |
|
factor = self.limiter(factor) |
|
accept = factor >= self.accept_safety |
|
if accept: |
|
self.errs[2] = self.errs[1] |
|
self.errs[1] = self.errs[0] |
|
self.h *= factor |
|
return accept |
|
|
|
|
|
class DPMSolver(nn.Module): |
|
"""DPM-Solver. See https://arxiv.org/abs/2206.00927.""" |
|
|
|
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None): |
|
super().__init__() |
|
self.model = model |
|
self.extra_args = {} if extra_args is None else extra_args |
|
self.eps_callback = eps_callback |
|
self.info_callback = info_callback |
|
|
|
def t(self, sigma): |
|
return -sigma.log() |
|
|
|
def sigma(self, t): |
|
return t.neg().exp() |
|
|
|
def eps(self, eps_cache, key, x, t, *args, **kwargs): |
|
if key in eps_cache: |
|
return eps_cache[key], eps_cache |
|
sigma = self.sigma(t) * x.new_ones([x.shape[0]]) |
|
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t) |
|
if self.eps_callback is not None: |
|
self.eps_callback() |
|
return eps, {key: eps, **eps_cache} |
|
|
|
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None): |
|
eps_cache = {} if eps_cache is None else eps_cache |
|
h = t_next - t |
|
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) |
|
x_1 = x - self.sigma(t_next) * h.expm1() * eps |
|
return x_1, eps_cache |
|
|
|
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None): |
|
eps_cache = {} if eps_cache is None else eps_cache |
|
h = t_next - t |
|
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) |
|
s1 = t + r1 * h |
|
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps |
|
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) |
|
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps) |
|
return x_2, eps_cache |
|
|
|
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None): |
|
eps_cache = {} if eps_cache is None else eps_cache |
|
h = t_next - t |
|
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) |
|
s1 = t + r1 * h |
|
s2 = t + r2 * h |
|
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps |
|
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) |
|
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps) |
|
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2) |
|
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps) |
|
return x_3, eps_cache |
|
|
|
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
if not t_end > t_start and eta: |
|
raise ValueError('eta must be 0 for reverse sampling') |
|
|
|
m = math.floor(nfe / 3) + 1 |
|
ts = torch.linspace(t_start, t_end, m + 1, device=x.device) |
|
|
|
if nfe % 3 == 0: |
|
orders = [3] * (m - 2) + [2, 1] |
|
else: |
|
orders = [3] * (m - 1) + [nfe % 3] |
|
|
|
for i in range(len(orders)): |
|
eps_cache = {} |
|
t, t_next = ts[i], ts[i + 1] |
|
if eta: |
|
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta) |
|
t_next_ = torch.minimum(t_end, self.t(sd)) |
|
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5 |
|
else: |
|
t_next_, su = t_next, 0. |
|
|
|
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) |
|
denoised = x - self.sigma(t) * eps |
|
if self.info_callback is not None: |
|
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised}) |
|
|
|
if orders[i] == 1: |
|
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache) |
|
elif orders[i] == 2: |
|
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache) |
|
else: |
|
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache) |
|
|
|
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next)) |
|
|
|
return x |
|
|
|
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
if order not in {2, 3}: |
|
raise ValueError('order should be 2 or 3') |
|
forward = t_end > t_start |
|
if not forward and eta: |
|
raise ValueError('eta must be 0 for reverse sampling') |
|
h_init = abs(h_init) * (1 if forward else -1) |
|
atol = torch.tensor(atol) |
|
rtol = torch.tensor(rtol) |
|
s = t_start |
|
x_prev = x |
|
accept = True |
|
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety) |
|
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0} |
|
|
|
while s < t_end - 1e-5 if forward else s > t_end + 1e-5: |
|
eps_cache = {} |
|
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h) |
|
if eta: |
|
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta) |
|
t_ = torch.minimum(t_end, self.t(sd)) |
|
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5 |
|
else: |
|
t_, su = t, 0. |
|
|
|
eps, eps_cache = self.eps(eps_cache, 'eps', x, s) |
|
denoised = x - self.sigma(s) * eps |
|
|
|
if order == 2: |
|
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache) |
|
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache) |
|
else: |
|
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache) |
|
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache) |
|
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs())) |
|
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5 |
|
accept = pid.propose_step(error) |
|
if accept: |
|
x_prev = x_low |
|
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t)) |
|
s = t |
|
info['n_accept'] += 1 |
|
else: |
|
info['n_reject'] += 1 |
|
info['nfe'] += order |
|
info['steps'] += 1 |
|
|
|
if self.info_callback is not None: |
|
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info}) |
|
|
|
return x, info |
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_2m_v1(model, x, sigmas, extra_args=None, callback=None, disable=None): |
|
"""DPM-Solver++(2M).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigma_fn = lambda t: t.neg().exp() |
|
t_fn = lambda sigma: sigma.log().neg() |
|
old_denoised = None |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) |
|
h = t_next - t |
|
if old_denoised is None or sigmas[i + 1] == 0: |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised |
|
else: |
|
h_last = t - t_fn(sigmas[i - 1]) |
|
r = h_last / h |
|
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d |
|
sigma_progress = i / len(sigmas) |
|
adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress)) |
|
old_denoised = denoised * adjustment_factor |
|
return x |
|
|
|
@torch.no_grad() |
|
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None): |
|
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927.""" |
|
if sigma_min <= 0 or sigma_max <= 0: |
|
raise ValueError('sigma_min and sigma_max must not be 0') |
|
with tqdm(total=n, disable=disable) as pbar: |
|
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) |
|
if callback is not None: |
|
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) |
|
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler) |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False): |
|
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927.""" |
|
if sigma_min <= 0 or sigma_max <= 0: |
|
raise ValueError('sigma_min and sigma_max must not be 0') |
|
with tqdm(disable=disable) as pbar: |
|
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) |
|
if callback is not None: |
|
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) |
|
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler) |
|
if return_info: |
|
return x, info |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): |
|
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" |
|
extra_args = {} if extra_args is None else extra_args |
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigma_fn = lambda t: t.neg().exp() |
|
t_fn = lambda sigma: sigma.log().neg() |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
if sigma_down == 0: |
|
|
|
d = to_d(x, sigmas[i], denoised) |
|
dt = sigma_down - sigmas[i] |
|
x = x + d * dt |
|
else: |
|
|
|
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) |
|
r = 1 / 2 |
|
h = t_next - t |
|
s = t + r * h |
|
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised |
|
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 |
|
|
|
if sigmas[i + 1] > 0: |
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): |
|
"""DPM-Solver++ (stochastic).""" |
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() |
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigma_fn = lambda t: t.neg().exp() |
|
t_fn = lambda sigma: sigma.log().neg() |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
if sigmas[i + 1] == 0: |
|
|
|
d = to_d(x, sigmas[i], denoised) |
|
dt = sigmas[i + 1] - sigmas[i] |
|
x = x + d * dt |
|
else: |
|
|
|
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) |
|
h = t_next - t |
|
s = t + h * r |
|
fac = 1 / (2 * r) |
|
|
|
|
|
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) |
|
s_ = t_fn(sd) |
|
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised |
|
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su |
|
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) |
|
|
|
|
|
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta) |
|
t_next_ = t_fn(sd) |
|
denoised_d = (1 - fac) * denoised + fac * denoised_2 |
|
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d |
|
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): |
|
"""DPM-Solver++(2M).""" |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
sigma_fn = lambda t: t.neg().exp() |
|
t_fn = lambda sigma: sigma.log().neg() |
|
old_denoised = None |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) |
|
h = t_next - t |
|
if old_denoised is None or sigmas[i + 1] == 0: |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised |
|
else: |
|
h_last = t - t_fn(sigmas[i - 1]) |
|
r = h_last / h |
|
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised |
|
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d |
|
old_denoised = denoised |
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): |
|
"""DPM-Solver++(2M) SDE.""" |
|
|
|
if solver_type not in {'heun', 'midpoint'}: |
|
raise ValueError('solver_type must be \'heun\' or \'midpoint\'') |
|
|
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() |
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler |
|
extra_args = {} if extra_args is None else extra_args |
|
s_in = x.new_ones([x.shape[0]]) |
|
|
|
old_denoised = None |
|
h_last = None |
|
|
|
for i in trange(len(sigmas) - 1, disable=disable): |
|
denoised = model(x, sigmas[i] * s_in, **extra_args) |
|
if callback is not None: |
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) |
|
if sigmas[i + 1] == 0: |
|
|
|
x = denoised |
|
else: |
|
|
|
t, s = -sigmas[i].log(), -sigmas[i + 1].log() |
|
h = s - t |
|
eta_h = eta * h |
|
|
|
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised |
|
|
|
if old_denoised is not None: |
|
r = h_last / h |
|
if solver_type == 'heun': |
|
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) |
|
elif solver_type == 'midpoint': |
|
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) |
|
|
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise |
|
|
|
old_denoised = denoised |
|
h_last = h |
|
return x |
|
|