Outimus commited on
Commit
170869f
·
1 Parent(s): a825dc7

Upload sampling.py

Browse files
Files changed (1) hide show
  1. sampling.py +677 -0
sampling.py ADDED
@@ -0,0 +1,677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from scipy import integrate
4
+ import torch
5
+ from torch import nn
6
+ from torchdiffeq import odeint
7
+ import torchsde
8
+ from tqdm.auto import trange, tqdm
9
+
10
+ from . import utils
11
+
12
+
13
+ def append_zero(x):
14
+ return torch.cat([x, x.new_zeros([1])])
15
+
16
+
17
+ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
18
+ """Constructs the noise schedule of Karras et al. (2022)."""
19
+ ramp = torch.linspace(0, 1, n)
20
+ min_inv_rho = sigma_min ** (1 / rho)
21
+ max_inv_rho = sigma_max ** (1 / rho)
22
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
23
+ return append_zero(sigmas).to(device)
24
+
25
+
26
+ def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
27
+ """Constructs an exponential noise schedule."""
28
+ sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
29
+ return append_zero(sigmas)
30
+
31
+
32
+ def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
33
+ """Constructs an polynomial in log sigma noise schedule."""
34
+ ramp = torch.linspace(1, 0, n, device=device) ** rho
35
+ sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
36
+ return append_zero(sigmas)
37
+
38
+
39
+ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
40
+ """Constructs a continuous VP noise schedule."""
41
+ t = torch.linspace(1, eps_s, n, device=device)
42
+ sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
43
+ return append_zero(sigmas)
44
+
45
+
46
+ def to_d(x, sigma, denoised):
47
+ """Converts a denoiser output to a Karras ODE derivative."""
48
+ return (x - denoised) / utils.append_dims(sigma, x.ndim)
49
+
50
+
51
+ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
52
+ """Calculates the noise level (sigma_down) to step down to and the amount
53
+ of noise to add (sigma_up) when doing an ancestral sampling step."""
54
+ if not eta:
55
+ return sigma_to, 0.
56
+ sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
57
+ sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
58
+ return sigma_down, sigma_up
59
+
60
+
61
+ def default_noise_sampler(x):
62
+ return lambda sigma, sigma_next: torch.randn_like(x)
63
+
64
+
65
+ class BatchedBrownianTree:
66
+ """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
67
+
68
+ def __init__(self, x, t0, t1, seed=None, **kwargs):
69
+ t0, t1, self.sign = self.sort(t0, t1)
70
+ w0 = kwargs.get('w0', torch.zeros_like(x))
71
+ if seed is None:
72
+ seed = torch.randint(0, 2 ** 63 - 1, []).item()
73
+ self.batched = True
74
+ try:
75
+ assert len(seed) == x.shape[0]
76
+ w0 = w0[0]
77
+ except TypeError:
78
+ seed = [seed]
79
+ self.batched = False
80
+ self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
81
+
82
+ @staticmethod
83
+ def sort(a, b):
84
+ return (a, b, 1) if a < b else (b, a, -1)
85
+
86
+ def __call__(self, t0, t1):
87
+ t0, t1, sign = self.sort(t0, t1)
88
+ w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
89
+ return w if self.batched else w[0]
90
+
91
+
92
+ class BrownianTreeNoiseSampler:
93
+ """A noise sampler backed by a torchsde.BrownianTree.
94
+
95
+ Args:
96
+ x (Tensor): The tensor whose shape, device and dtype to use to generate
97
+ random samples.
98
+ sigma_min (float): The low end of the valid interval.
99
+ sigma_max (float): The high end of the valid interval.
100
+ seed (int or List[int]): The random seed. If a list of seeds is
101
+ supplied instead of a single integer, then the noise sampler will
102
+ use one BrownianTree per batch item, each with its own seed.
103
+ transform (callable): A function that maps sigma to the sampler's
104
+ internal timestep.
105
+ """
106
+
107
+ def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
108
+ self.transform = transform
109
+ t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
110
+ self.tree = BatchedBrownianTree(x, t0, t1, seed)
111
+
112
+ def __call__(self, sigma, sigma_next):
113
+ t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
114
+ return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
115
+
116
+
117
+ @torch.no_grad()
118
+ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
119
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
120
+ extra_args = {} if extra_args is None else extra_args
121
+ s_in = x.new_ones([x.shape[0]])
122
+ for i in trange(len(sigmas) - 1, disable=disable):
123
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
124
+ eps = torch.randn_like(x) * s_noise
125
+ sigma_hat = sigmas[i] * (gamma + 1)
126
+ if gamma > 0:
127
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
128
+ denoised = model(x, sigma_hat * s_in, **extra_args)
129
+ d = to_d(x, sigma_hat, denoised)
130
+ if callback is not None:
131
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
132
+ dt = sigmas[i + 1] - sigma_hat
133
+ # Euler method
134
+ x = x + d * dt
135
+ return x
136
+
137
+
138
+ @torch.no_grad()
139
+ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
140
+ """Ancestral sampling with Euler method steps."""
141
+ extra_args = {} if extra_args is None else extra_args
142
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
143
+ s_in = x.new_ones([x.shape[0]])
144
+ for i in trange(len(sigmas) - 1, disable=disable):
145
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
146
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
147
+ if callback is not None:
148
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
149
+ d = to_d(x, sigmas[i], denoised)
150
+ # Euler method
151
+ dt = sigma_down - sigmas[i]
152
+ x = x + d * dt
153
+ if sigmas[i + 1] > 0:
154
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
155
+ return x
156
+
157
+
158
+ @torch.no_grad()
159
+ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
160
+ """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
161
+ extra_args = {} if extra_args is None else extra_args
162
+ s_in = x.new_ones([x.shape[0]])
163
+ for i in trange(len(sigmas) - 1, disable=disable):
164
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
165
+ eps = torch.randn_like(x) * s_noise
166
+ sigma_hat = sigmas[i] * (gamma + 1)
167
+ if gamma > 0:
168
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
169
+ denoised = model(x, sigma_hat * s_in, **extra_args)
170
+ d = to_d(x, sigma_hat, denoised)
171
+ if callback is not None:
172
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
173
+ dt = sigmas[i + 1] - sigma_hat
174
+ if sigmas[i + 1] == 0:
175
+ # Euler method
176
+ x = x + d * dt
177
+ else:
178
+ # Heun's method
179
+ x_2 = x + d * dt
180
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
181
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
182
+ d_prime = (d + d_2) / 2
183
+ x = x + d_prime * dt
184
+ return x
185
+
186
+
187
+ @torch.no_grad()
188
+ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
189
+ """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
190
+ extra_args = {} if extra_args is None else extra_args
191
+ s_in = x.new_ones([x.shape[0]])
192
+ for i in trange(len(sigmas) - 1, disable=disable):
193
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
194
+ eps = torch.randn_like(x) * s_noise
195
+ sigma_hat = sigmas[i] * (gamma + 1)
196
+ if gamma > 0:
197
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
198
+ denoised = model(x, sigma_hat * s_in, **extra_args)
199
+ d = to_d(x, sigma_hat, denoised)
200
+ if callback is not None:
201
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
202
+ if sigmas[i + 1] == 0:
203
+ # Euler method
204
+ dt = sigmas[i + 1] - sigma_hat
205
+ x = x + d * dt
206
+ else:
207
+ # DPM-Solver-2
208
+ sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
209
+ dt_1 = sigma_mid - sigma_hat
210
+ dt_2 = sigmas[i + 1] - sigma_hat
211
+ x_2 = x + d * dt_1
212
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
213
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
214
+ x = x + d_2 * dt_2
215
+ return x
216
+
217
+
218
+ @torch.no_grad()
219
+ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
220
+ """Ancestral sampling with DPM-Solver second-order steps."""
221
+ extra_args = {} if extra_args is None else extra_args
222
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
223
+ s_in = x.new_ones([x.shape[0]])
224
+ for i in trange(len(sigmas) - 1, disable=disable):
225
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
226
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
227
+ if callback is not None:
228
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
229
+ d = to_d(x, sigmas[i], denoised)
230
+ if sigma_down == 0:
231
+ # Euler method
232
+ dt = sigma_down - sigmas[i]
233
+ x = x + d * dt
234
+ else:
235
+ # DPM-Solver-2
236
+ sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
237
+ dt_1 = sigma_mid - sigmas[i]
238
+ dt_2 = sigma_down - sigmas[i]
239
+ x_2 = x + d * dt_1
240
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
241
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
242
+ x = x + d_2 * dt_2
243
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
244
+ return x
245
+
246
+
247
+ def linear_multistep_coeff(order, t, i, j):
248
+ if order - 1 > i:
249
+ raise ValueError(f'Order {order} too high for step {i}')
250
+ def fn(tau):
251
+ prod = 1.
252
+ for k in range(order):
253
+ if j == k:
254
+ continue
255
+ prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
256
+ return prod
257
+ return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
258
+
259
+
260
+ @torch.no_grad()
261
+ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
262
+ extra_args = {} if extra_args is None else extra_args
263
+ s_in = x.new_ones([x.shape[0]])
264
+ sigmas_cpu = sigmas.detach().cpu().numpy()
265
+ ds = []
266
+ for i in trange(len(sigmas) - 1, disable=disable):
267
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
268
+ d = to_d(x, sigmas[i], denoised)
269
+ ds.append(d)
270
+ if len(ds) > order:
271
+ ds.pop(0)
272
+ if callback is not None:
273
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
274
+ cur_order = min(i + 1, order)
275
+ coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
276
+ x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
277
+ return x
278
+
279
+
280
+ @torch.no_grad()
281
+ def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
282
+ extra_args = {} if extra_args is None else extra_args
283
+ s_in = x.new_ones([x.shape[0]])
284
+ v = torch.randint_like(x, 2) * 2 - 1
285
+ fevals = 0
286
+ def ode_fn(sigma, x):
287
+ nonlocal fevals
288
+ with torch.enable_grad():
289
+ x = x[0].detach().requires_grad_()
290
+ denoised = model(x, sigma * s_in, **extra_args)
291
+ d = to_d(x, sigma, denoised)
292
+ fevals += 1
293
+ grad = torch.autograd.grad((d * v).sum(), x)[0]
294
+ d_ll = (v * grad).flatten(1).sum(1)
295
+ return d.detach(), d_ll
296
+ x_min = x, x.new_zeros([x.shape[0]])
297
+ t = x.new_tensor([sigma_min, sigma_max])
298
+ sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
299
+ latent, delta_ll = sol[0][-1], sol[1][-1]
300
+ ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
301
+ return ll_prior + delta_ll, {'fevals': fevals}
302
+
303
+
304
+ class PIDStepSizeController:
305
+ """A PID controller for ODE adaptive step size control."""
306
+ def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
307
+ self.h = h
308
+ self.b1 = (pcoeff + icoeff + dcoeff) / order
309
+ self.b2 = -(pcoeff + 2 * dcoeff) / order
310
+ self.b3 = dcoeff / order
311
+ self.accept_safety = accept_safety
312
+ self.eps = eps
313
+ self.errs = []
314
+
315
+ def limiter(self, x):
316
+ return 1 + math.atan(x - 1)
317
+
318
+ def propose_step(self, error):
319
+ inv_error = 1 / (float(error) + self.eps)
320
+ if not self.errs:
321
+ self.errs = [inv_error, inv_error, inv_error]
322
+ self.errs[0] = inv_error
323
+ factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
324
+ factor = self.limiter(factor)
325
+ accept = factor >= self.accept_safety
326
+ if accept:
327
+ self.errs[2] = self.errs[1]
328
+ self.errs[1] = self.errs[0]
329
+ self.h *= factor
330
+ return accept
331
+
332
+
333
+ class DPMSolver(nn.Module):
334
+ """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
335
+
336
+ def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
337
+ super().__init__()
338
+ self.model = model
339
+ self.extra_args = {} if extra_args is None else extra_args
340
+ self.eps_callback = eps_callback
341
+ self.info_callback = info_callback
342
+
343
+ def t(self, sigma):
344
+ return -sigma.log()
345
+
346
+ def sigma(self, t):
347
+ return t.neg().exp()
348
+
349
+ def eps(self, eps_cache, key, x, t, *args, **kwargs):
350
+ if key in eps_cache:
351
+ return eps_cache[key], eps_cache
352
+ sigma = self.sigma(t) * x.new_ones([x.shape[0]])
353
+ eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
354
+ if self.eps_callback is not None:
355
+ self.eps_callback()
356
+ return eps, {key: eps, **eps_cache}
357
+
358
+ def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
359
+ eps_cache = {} if eps_cache is None else eps_cache
360
+ h = t_next - t
361
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
362
+ x_1 = x - self.sigma(t_next) * h.expm1() * eps
363
+ return x_1, eps_cache
364
+
365
+ def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
366
+ eps_cache = {} if eps_cache is None else eps_cache
367
+ h = t_next - t
368
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
369
+ s1 = t + r1 * h
370
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
371
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
372
+ x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
373
+ return x_2, eps_cache
374
+
375
+ def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
376
+ eps_cache = {} if eps_cache is None else eps_cache
377
+ h = t_next - t
378
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
379
+ s1 = t + r1 * h
380
+ s2 = t + r2 * h
381
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
382
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
383
+ u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
384
+ eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
385
+ x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
386
+ return x_3, eps_cache
387
+
388
+ def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
389
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
390
+ if not t_end > t_start and eta:
391
+ raise ValueError('eta must be 0 for reverse sampling')
392
+
393
+ m = math.floor(nfe / 3) + 1
394
+ ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
395
+
396
+ if nfe % 3 == 0:
397
+ orders = [3] * (m - 2) + [2, 1]
398
+ else:
399
+ orders = [3] * (m - 1) + [nfe % 3]
400
+
401
+ for i in range(len(orders)):
402
+ eps_cache = {}
403
+ t, t_next = ts[i], ts[i + 1]
404
+ if eta:
405
+ sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
406
+ t_next_ = torch.minimum(t_end, self.t(sd))
407
+ su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
408
+ else:
409
+ t_next_, su = t_next, 0.
410
+
411
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
412
+ denoised = x - self.sigma(t) * eps
413
+ if self.info_callback is not None:
414
+ self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
415
+
416
+ if orders[i] == 1:
417
+ x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
418
+ elif orders[i] == 2:
419
+ x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
420
+ else:
421
+ x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
422
+
423
+ x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
424
+
425
+ return x
426
+
427
+ def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
428
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
429
+ if order not in {2, 3}:
430
+ raise ValueError('order should be 2 or 3')
431
+ forward = t_end > t_start
432
+ if not forward and eta:
433
+ raise ValueError('eta must be 0 for reverse sampling')
434
+ h_init = abs(h_init) * (1 if forward else -1)
435
+ atol = torch.tensor(atol)
436
+ rtol = torch.tensor(rtol)
437
+ s = t_start
438
+ x_prev = x
439
+ accept = True
440
+ pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
441
+ info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
442
+
443
+ while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
444
+ eps_cache = {}
445
+ t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
446
+ if eta:
447
+ sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
448
+ t_ = torch.minimum(t_end, self.t(sd))
449
+ su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
450
+ else:
451
+ t_, su = t, 0.
452
+
453
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
454
+ denoised = x - self.sigma(s) * eps
455
+
456
+ if order == 2:
457
+ x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
458
+ x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
459
+ else:
460
+ x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
461
+ x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
462
+ delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
463
+ error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
464
+ accept = pid.propose_step(error)
465
+ if accept:
466
+ x_prev = x_low
467
+ x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
468
+ s = t
469
+ info['n_accept'] += 1
470
+ else:
471
+ info['n_reject'] += 1
472
+ info['nfe'] += order
473
+ info['steps'] += 1
474
+
475
+ if self.info_callback is not None:
476
+ self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
477
+
478
+ return x, info
479
+
480
+ @torch.no_grad()
481
+ def sample_dpmpp_2m_v1(model, x, sigmas, extra_args=None, callback=None, disable=None):
482
+ """DPM-Solver++(2M)."""
483
+ extra_args = {} if extra_args is None else extra_args
484
+ s_in = x.new_ones([x.shape[0]])
485
+ sigma_fn = lambda t: t.neg().exp()
486
+ t_fn = lambda sigma: sigma.log().neg()
487
+ old_denoised = None
488
+
489
+ for i in trange(len(sigmas) - 1, disable=disable):
490
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
491
+ if callback is not None:
492
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
493
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
494
+ h = t_next - t
495
+ if old_denoised is None or sigmas[i + 1] == 0:
496
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
497
+ else:
498
+ h_last = t - t_fn(sigmas[i - 1])
499
+ r = h_last / h
500
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
501
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
502
+ sigma_progress = i / len(sigmas)
503
+ adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
504
+ old_denoised = denoised * adjustment_factor
505
+ return x
506
+
507
+ @torch.no_grad()
508
+ def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
509
+ """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
510
+ if sigma_min <= 0 or sigma_max <= 0:
511
+ raise ValueError('sigma_min and sigma_max must not be 0')
512
+ with tqdm(total=n, disable=disable) as pbar:
513
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
514
+ if callback is not None:
515
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
516
+ return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
517
+
518
+
519
+ @torch.no_grad()
520
+ def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
521
+ """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
522
+ if sigma_min <= 0 or sigma_max <= 0:
523
+ raise ValueError('sigma_min and sigma_max must not be 0')
524
+ with tqdm(disable=disable) as pbar:
525
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
526
+ if callback is not None:
527
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
528
+ x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
529
+ if return_info:
530
+ return x, info
531
+ return x
532
+
533
+
534
+ @torch.no_grad()
535
+ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
536
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
537
+ extra_args = {} if extra_args is None else extra_args
538
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
539
+ s_in = x.new_ones([x.shape[0]])
540
+ sigma_fn = lambda t: t.neg().exp()
541
+ t_fn = lambda sigma: sigma.log().neg()
542
+
543
+ for i in trange(len(sigmas) - 1, disable=disable):
544
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
545
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
546
+ if callback is not None:
547
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
548
+ if sigma_down == 0:
549
+ # Euler method
550
+ d = to_d(x, sigmas[i], denoised)
551
+ dt = sigma_down - sigmas[i]
552
+ x = x + d * dt
553
+ else:
554
+ # DPM-Solver++(2S)
555
+ t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
556
+ r = 1 / 2
557
+ h = t_next - t
558
+ s = t + r * h
559
+ x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
560
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
561
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
562
+ # Noise addition
563
+ if sigmas[i + 1] > 0:
564
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
565
+ return x
566
+
567
+
568
+ @torch.no_grad()
569
+ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
570
+ """DPM-Solver++ (stochastic)."""
571
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
572
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
573
+ extra_args = {} if extra_args is None else extra_args
574
+ s_in = x.new_ones([x.shape[0]])
575
+ sigma_fn = lambda t: t.neg().exp()
576
+ t_fn = lambda sigma: sigma.log().neg()
577
+
578
+ for i in trange(len(sigmas) - 1, disable=disable):
579
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
580
+ if callback is not None:
581
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
582
+ if sigmas[i + 1] == 0:
583
+ # Euler method
584
+ d = to_d(x, sigmas[i], denoised)
585
+ dt = sigmas[i + 1] - sigmas[i]
586
+ x = x + d * dt
587
+ else:
588
+ # DPM-Solver++
589
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
590
+ h = t_next - t
591
+ s = t + h * r
592
+ fac = 1 / (2 * r)
593
+
594
+ # Step 1
595
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
596
+ s_ = t_fn(sd)
597
+ x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
598
+ x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
599
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
600
+
601
+ # Step 2
602
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
603
+ t_next_ = t_fn(sd)
604
+ denoised_d = (1 - fac) * denoised + fac * denoised_2
605
+ x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
606
+ x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
607
+ return x
608
+
609
+
610
+ @torch.no_grad()
611
+ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
612
+ """DPM-Solver++(2M)."""
613
+ extra_args = {} if extra_args is None else extra_args
614
+ s_in = x.new_ones([x.shape[0]])
615
+ sigma_fn = lambda t: t.neg().exp()
616
+ t_fn = lambda sigma: sigma.log().neg()
617
+ old_denoised = None
618
+
619
+ for i in trange(len(sigmas) - 1, disable=disable):
620
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
621
+ if callback is not None:
622
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
623
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
624
+ h = t_next - t
625
+ if old_denoised is None or sigmas[i + 1] == 0:
626
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
627
+ else:
628
+ h_last = t - t_fn(sigmas[i - 1])
629
+ r = h_last / h
630
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
631
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
632
+ old_denoised = denoised
633
+ return x
634
+
635
+
636
+ @torch.no_grad()
637
+ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
638
+ """DPM-Solver++(2M) SDE."""
639
+
640
+ if solver_type not in {'heun', 'midpoint'}:
641
+ raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
642
+
643
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
644
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
645
+ extra_args = {} if extra_args is None else extra_args
646
+ s_in = x.new_ones([x.shape[0]])
647
+
648
+ old_denoised = None
649
+ h_last = None
650
+
651
+ for i in trange(len(sigmas) - 1, disable=disable):
652
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
653
+ if callback is not None:
654
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
655
+ if sigmas[i + 1] == 0:
656
+ # Denoising step
657
+ x = denoised
658
+ else:
659
+ # DPM-Solver++(2M) SDE
660
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
661
+ h = s - t
662
+ eta_h = eta * h
663
+
664
+ x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
665
+
666
+ if old_denoised is not None:
667
+ r = h_last / h
668
+ if solver_type == 'heun':
669
+ x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
670
+ elif solver_type == 'midpoint':
671
+ x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
672
+
673
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
674
+
675
+ old_denoised = denoised
676
+ h_last = h
677
+ return x