Upload sampling.py
Browse files- sampling.py +677 -0
sampling.py
ADDED
@@ -0,0 +1,677 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from scipy import integrate
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torchdiffeq import odeint
|
7 |
+
import torchsde
|
8 |
+
from tqdm.auto import trange, tqdm
|
9 |
+
|
10 |
+
from . import utils
|
11 |
+
|
12 |
+
|
13 |
+
def append_zero(x):
|
14 |
+
return torch.cat([x, x.new_zeros([1])])
|
15 |
+
|
16 |
+
|
17 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
18 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
19 |
+
ramp = torch.linspace(0, 1, n)
|
20 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
21 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
22 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
23 |
+
return append_zero(sigmas).to(device)
|
24 |
+
|
25 |
+
|
26 |
+
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
27 |
+
"""Constructs an exponential noise schedule."""
|
28 |
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
29 |
+
return append_zero(sigmas)
|
30 |
+
|
31 |
+
|
32 |
+
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
|
33 |
+
"""Constructs an polynomial in log sigma noise schedule."""
|
34 |
+
ramp = torch.linspace(1, 0, n, device=device) ** rho
|
35 |
+
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
|
36 |
+
return append_zero(sigmas)
|
37 |
+
|
38 |
+
|
39 |
+
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
40 |
+
"""Constructs a continuous VP noise schedule."""
|
41 |
+
t = torch.linspace(1, eps_s, n, device=device)
|
42 |
+
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
|
43 |
+
return append_zero(sigmas)
|
44 |
+
|
45 |
+
|
46 |
+
def to_d(x, sigma, denoised):
|
47 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
48 |
+
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
49 |
+
|
50 |
+
|
51 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
52 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
53 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
54 |
+
if not eta:
|
55 |
+
return sigma_to, 0.
|
56 |
+
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
|
57 |
+
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
|
58 |
+
return sigma_down, sigma_up
|
59 |
+
|
60 |
+
|
61 |
+
def default_noise_sampler(x):
|
62 |
+
return lambda sigma, sigma_next: torch.randn_like(x)
|
63 |
+
|
64 |
+
|
65 |
+
class BatchedBrownianTree:
|
66 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
67 |
+
|
68 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
69 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
70 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
71 |
+
if seed is None:
|
72 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
73 |
+
self.batched = True
|
74 |
+
try:
|
75 |
+
assert len(seed) == x.shape[0]
|
76 |
+
w0 = w0[0]
|
77 |
+
except TypeError:
|
78 |
+
seed = [seed]
|
79 |
+
self.batched = False
|
80 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def sort(a, b):
|
84 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
85 |
+
|
86 |
+
def __call__(self, t0, t1):
|
87 |
+
t0, t1, sign = self.sort(t0, t1)
|
88 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
89 |
+
return w if self.batched else w[0]
|
90 |
+
|
91 |
+
|
92 |
+
class BrownianTreeNoiseSampler:
|
93 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
97 |
+
random samples.
|
98 |
+
sigma_min (float): The low end of the valid interval.
|
99 |
+
sigma_max (float): The high end of the valid interval.
|
100 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
101 |
+
supplied instead of a single integer, then the noise sampler will
|
102 |
+
use one BrownianTree per batch item, each with its own seed.
|
103 |
+
transform (callable): A function that maps sigma to the sampler's
|
104 |
+
internal timestep.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
|
108 |
+
self.transform = transform
|
109 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
110 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed)
|
111 |
+
|
112 |
+
def __call__(self, sigma, sigma_next):
|
113 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
114 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
115 |
+
|
116 |
+
|
117 |
+
@torch.no_grad()
|
118 |
+
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
119 |
+
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
120 |
+
extra_args = {} if extra_args is None else extra_args
|
121 |
+
s_in = x.new_ones([x.shape[0]])
|
122 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
123 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
124 |
+
eps = torch.randn_like(x) * s_noise
|
125 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
126 |
+
if gamma > 0:
|
127 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
128 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
129 |
+
d = to_d(x, sigma_hat, denoised)
|
130 |
+
if callback is not None:
|
131 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
132 |
+
dt = sigmas[i + 1] - sigma_hat
|
133 |
+
# Euler method
|
134 |
+
x = x + d * dt
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
@torch.no_grad()
|
139 |
+
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
140 |
+
"""Ancestral sampling with Euler method steps."""
|
141 |
+
extra_args = {} if extra_args is None else extra_args
|
142 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
143 |
+
s_in = x.new_ones([x.shape[0]])
|
144 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
145 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
146 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
147 |
+
if callback is not None:
|
148 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
149 |
+
d = to_d(x, sigmas[i], denoised)
|
150 |
+
# Euler method
|
151 |
+
dt = sigma_down - sigmas[i]
|
152 |
+
x = x + d * dt
|
153 |
+
if sigmas[i + 1] > 0:
|
154 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
160 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
161 |
+
extra_args = {} if extra_args is None else extra_args
|
162 |
+
s_in = x.new_ones([x.shape[0]])
|
163 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
164 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
165 |
+
eps = torch.randn_like(x) * s_noise
|
166 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
167 |
+
if gamma > 0:
|
168 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
169 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
170 |
+
d = to_d(x, sigma_hat, denoised)
|
171 |
+
if callback is not None:
|
172 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
173 |
+
dt = sigmas[i + 1] - sigma_hat
|
174 |
+
if sigmas[i + 1] == 0:
|
175 |
+
# Euler method
|
176 |
+
x = x + d * dt
|
177 |
+
else:
|
178 |
+
# Heun's method
|
179 |
+
x_2 = x + d * dt
|
180 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
181 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
182 |
+
d_prime = (d + d_2) / 2
|
183 |
+
x = x + d_prime * dt
|
184 |
+
return x
|
185 |
+
|
186 |
+
|
187 |
+
@torch.no_grad()
|
188 |
+
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
189 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
190 |
+
extra_args = {} if extra_args is None else extra_args
|
191 |
+
s_in = x.new_ones([x.shape[0]])
|
192 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
193 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
194 |
+
eps = torch.randn_like(x) * s_noise
|
195 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
196 |
+
if gamma > 0:
|
197 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
198 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
199 |
+
d = to_d(x, sigma_hat, denoised)
|
200 |
+
if callback is not None:
|
201 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
202 |
+
if sigmas[i + 1] == 0:
|
203 |
+
# Euler method
|
204 |
+
dt = sigmas[i + 1] - sigma_hat
|
205 |
+
x = x + d * dt
|
206 |
+
else:
|
207 |
+
# DPM-Solver-2
|
208 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
209 |
+
dt_1 = sigma_mid - sigma_hat
|
210 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
211 |
+
x_2 = x + d * dt_1
|
212 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
213 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
214 |
+
x = x + d_2 * dt_2
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
220 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
221 |
+
extra_args = {} if extra_args is None else extra_args
|
222 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
223 |
+
s_in = x.new_ones([x.shape[0]])
|
224 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
225 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
226 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
227 |
+
if callback is not None:
|
228 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
229 |
+
d = to_d(x, sigmas[i], denoised)
|
230 |
+
if sigma_down == 0:
|
231 |
+
# Euler method
|
232 |
+
dt = sigma_down - sigmas[i]
|
233 |
+
x = x + d * dt
|
234 |
+
else:
|
235 |
+
# DPM-Solver-2
|
236 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
237 |
+
dt_1 = sigma_mid - sigmas[i]
|
238 |
+
dt_2 = sigma_down - sigmas[i]
|
239 |
+
x_2 = x + d * dt_1
|
240 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
241 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
242 |
+
x = x + d_2 * dt_2
|
243 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
244 |
+
return x
|
245 |
+
|
246 |
+
|
247 |
+
def linear_multistep_coeff(order, t, i, j):
|
248 |
+
if order - 1 > i:
|
249 |
+
raise ValueError(f'Order {order} too high for step {i}')
|
250 |
+
def fn(tau):
|
251 |
+
prod = 1.
|
252 |
+
for k in range(order):
|
253 |
+
if j == k:
|
254 |
+
continue
|
255 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
256 |
+
return prod
|
257 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
258 |
+
|
259 |
+
|
260 |
+
@torch.no_grad()
|
261 |
+
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
|
262 |
+
extra_args = {} if extra_args is None else extra_args
|
263 |
+
s_in = x.new_ones([x.shape[0]])
|
264 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
265 |
+
ds = []
|
266 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
267 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
268 |
+
d = to_d(x, sigmas[i], denoised)
|
269 |
+
ds.append(d)
|
270 |
+
if len(ds) > order:
|
271 |
+
ds.pop(0)
|
272 |
+
if callback is not None:
|
273 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
274 |
+
cur_order = min(i + 1, order)
|
275 |
+
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
276 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
@torch.no_grad()
|
281 |
+
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
|
282 |
+
extra_args = {} if extra_args is None else extra_args
|
283 |
+
s_in = x.new_ones([x.shape[0]])
|
284 |
+
v = torch.randint_like(x, 2) * 2 - 1
|
285 |
+
fevals = 0
|
286 |
+
def ode_fn(sigma, x):
|
287 |
+
nonlocal fevals
|
288 |
+
with torch.enable_grad():
|
289 |
+
x = x[0].detach().requires_grad_()
|
290 |
+
denoised = model(x, sigma * s_in, **extra_args)
|
291 |
+
d = to_d(x, sigma, denoised)
|
292 |
+
fevals += 1
|
293 |
+
grad = torch.autograd.grad((d * v).sum(), x)[0]
|
294 |
+
d_ll = (v * grad).flatten(1).sum(1)
|
295 |
+
return d.detach(), d_ll
|
296 |
+
x_min = x, x.new_zeros([x.shape[0]])
|
297 |
+
t = x.new_tensor([sigma_min, sigma_max])
|
298 |
+
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
|
299 |
+
latent, delta_ll = sol[0][-1], sol[1][-1]
|
300 |
+
ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
|
301 |
+
return ll_prior + delta_ll, {'fevals': fevals}
|
302 |
+
|
303 |
+
|
304 |
+
class PIDStepSizeController:
|
305 |
+
"""A PID controller for ODE adaptive step size control."""
|
306 |
+
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
|
307 |
+
self.h = h
|
308 |
+
self.b1 = (pcoeff + icoeff + dcoeff) / order
|
309 |
+
self.b2 = -(pcoeff + 2 * dcoeff) / order
|
310 |
+
self.b3 = dcoeff / order
|
311 |
+
self.accept_safety = accept_safety
|
312 |
+
self.eps = eps
|
313 |
+
self.errs = []
|
314 |
+
|
315 |
+
def limiter(self, x):
|
316 |
+
return 1 + math.atan(x - 1)
|
317 |
+
|
318 |
+
def propose_step(self, error):
|
319 |
+
inv_error = 1 / (float(error) + self.eps)
|
320 |
+
if not self.errs:
|
321 |
+
self.errs = [inv_error, inv_error, inv_error]
|
322 |
+
self.errs[0] = inv_error
|
323 |
+
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
|
324 |
+
factor = self.limiter(factor)
|
325 |
+
accept = factor >= self.accept_safety
|
326 |
+
if accept:
|
327 |
+
self.errs[2] = self.errs[1]
|
328 |
+
self.errs[1] = self.errs[0]
|
329 |
+
self.h *= factor
|
330 |
+
return accept
|
331 |
+
|
332 |
+
|
333 |
+
class DPMSolver(nn.Module):
|
334 |
+
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
|
335 |
+
|
336 |
+
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
|
337 |
+
super().__init__()
|
338 |
+
self.model = model
|
339 |
+
self.extra_args = {} if extra_args is None else extra_args
|
340 |
+
self.eps_callback = eps_callback
|
341 |
+
self.info_callback = info_callback
|
342 |
+
|
343 |
+
def t(self, sigma):
|
344 |
+
return -sigma.log()
|
345 |
+
|
346 |
+
def sigma(self, t):
|
347 |
+
return t.neg().exp()
|
348 |
+
|
349 |
+
def eps(self, eps_cache, key, x, t, *args, **kwargs):
|
350 |
+
if key in eps_cache:
|
351 |
+
return eps_cache[key], eps_cache
|
352 |
+
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
|
353 |
+
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
|
354 |
+
if self.eps_callback is not None:
|
355 |
+
self.eps_callback()
|
356 |
+
return eps, {key: eps, **eps_cache}
|
357 |
+
|
358 |
+
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
|
359 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
360 |
+
h = t_next - t
|
361 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
362 |
+
x_1 = x - self.sigma(t_next) * h.expm1() * eps
|
363 |
+
return x_1, eps_cache
|
364 |
+
|
365 |
+
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
|
366 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
367 |
+
h = t_next - t
|
368 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
369 |
+
s1 = t + r1 * h
|
370 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
371 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
372 |
+
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
|
373 |
+
return x_2, eps_cache
|
374 |
+
|
375 |
+
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
|
376 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
377 |
+
h = t_next - t
|
378 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
379 |
+
s1 = t + r1 * h
|
380 |
+
s2 = t + r2 * h
|
381 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
382 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
383 |
+
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
|
384 |
+
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
|
385 |
+
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
|
386 |
+
return x_3, eps_cache
|
387 |
+
|
388 |
+
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
|
389 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
390 |
+
if not t_end > t_start and eta:
|
391 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
392 |
+
|
393 |
+
m = math.floor(nfe / 3) + 1
|
394 |
+
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
|
395 |
+
|
396 |
+
if nfe % 3 == 0:
|
397 |
+
orders = [3] * (m - 2) + [2, 1]
|
398 |
+
else:
|
399 |
+
orders = [3] * (m - 1) + [nfe % 3]
|
400 |
+
|
401 |
+
for i in range(len(orders)):
|
402 |
+
eps_cache = {}
|
403 |
+
t, t_next = ts[i], ts[i + 1]
|
404 |
+
if eta:
|
405 |
+
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
|
406 |
+
t_next_ = torch.minimum(t_end, self.t(sd))
|
407 |
+
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
|
408 |
+
else:
|
409 |
+
t_next_, su = t_next, 0.
|
410 |
+
|
411 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
412 |
+
denoised = x - self.sigma(t) * eps
|
413 |
+
if self.info_callback is not None:
|
414 |
+
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
|
415 |
+
|
416 |
+
if orders[i] == 1:
|
417 |
+
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
|
418 |
+
elif orders[i] == 2:
|
419 |
+
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
|
420 |
+
else:
|
421 |
+
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
|
422 |
+
|
423 |
+
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
|
424 |
+
|
425 |
+
return x
|
426 |
+
|
427 |
+
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
|
428 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
429 |
+
if order not in {2, 3}:
|
430 |
+
raise ValueError('order should be 2 or 3')
|
431 |
+
forward = t_end > t_start
|
432 |
+
if not forward and eta:
|
433 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
434 |
+
h_init = abs(h_init) * (1 if forward else -1)
|
435 |
+
atol = torch.tensor(atol)
|
436 |
+
rtol = torch.tensor(rtol)
|
437 |
+
s = t_start
|
438 |
+
x_prev = x
|
439 |
+
accept = True
|
440 |
+
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
|
441 |
+
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
|
442 |
+
|
443 |
+
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
|
444 |
+
eps_cache = {}
|
445 |
+
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
|
446 |
+
if eta:
|
447 |
+
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
|
448 |
+
t_ = torch.minimum(t_end, self.t(sd))
|
449 |
+
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
|
450 |
+
else:
|
451 |
+
t_, su = t, 0.
|
452 |
+
|
453 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
|
454 |
+
denoised = x - self.sigma(s) * eps
|
455 |
+
|
456 |
+
if order == 2:
|
457 |
+
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
|
458 |
+
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
|
459 |
+
else:
|
460 |
+
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
|
461 |
+
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
|
462 |
+
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
|
463 |
+
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
|
464 |
+
accept = pid.propose_step(error)
|
465 |
+
if accept:
|
466 |
+
x_prev = x_low
|
467 |
+
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
|
468 |
+
s = t
|
469 |
+
info['n_accept'] += 1
|
470 |
+
else:
|
471 |
+
info['n_reject'] += 1
|
472 |
+
info['nfe'] += order
|
473 |
+
info['steps'] += 1
|
474 |
+
|
475 |
+
if self.info_callback is not None:
|
476 |
+
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
|
477 |
+
|
478 |
+
return x, info
|
479 |
+
|
480 |
+
@torch.no_grad()
|
481 |
+
def sample_dpmpp_2m_v1(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
482 |
+
"""DPM-Solver++(2M)."""
|
483 |
+
extra_args = {} if extra_args is None else extra_args
|
484 |
+
s_in = x.new_ones([x.shape[0]])
|
485 |
+
sigma_fn = lambda t: t.neg().exp()
|
486 |
+
t_fn = lambda sigma: sigma.log().neg()
|
487 |
+
old_denoised = None
|
488 |
+
|
489 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
490 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
491 |
+
if callback is not None:
|
492 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
493 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
494 |
+
h = t_next - t
|
495 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
496 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
497 |
+
else:
|
498 |
+
h_last = t - t_fn(sigmas[i - 1])
|
499 |
+
r = h_last / h
|
500 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
501 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
502 |
+
sigma_progress = i / len(sigmas)
|
503 |
+
adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
|
504 |
+
old_denoised = denoised * adjustment_factor
|
505 |
+
return x
|
506 |
+
|
507 |
+
@torch.no_grad()
|
508 |
+
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
|
509 |
+
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
|
510 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
511 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
512 |
+
with tqdm(total=n, disable=disable) as pbar:
|
513 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
514 |
+
if callback is not None:
|
515 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
516 |
+
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
|
517 |
+
|
518 |
+
|
519 |
+
@torch.no_grad()
|
520 |
+
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
|
521 |
+
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
|
522 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
523 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
524 |
+
with tqdm(disable=disable) as pbar:
|
525 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
526 |
+
if callback is not None:
|
527 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
528 |
+
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
|
529 |
+
if return_info:
|
530 |
+
return x, info
|
531 |
+
return x
|
532 |
+
|
533 |
+
|
534 |
+
@torch.no_grad()
|
535 |
+
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
536 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
537 |
+
extra_args = {} if extra_args is None else extra_args
|
538 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
539 |
+
s_in = x.new_ones([x.shape[0]])
|
540 |
+
sigma_fn = lambda t: t.neg().exp()
|
541 |
+
t_fn = lambda sigma: sigma.log().neg()
|
542 |
+
|
543 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
544 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
545 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
546 |
+
if callback is not None:
|
547 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
548 |
+
if sigma_down == 0:
|
549 |
+
# Euler method
|
550 |
+
d = to_d(x, sigmas[i], denoised)
|
551 |
+
dt = sigma_down - sigmas[i]
|
552 |
+
x = x + d * dt
|
553 |
+
else:
|
554 |
+
# DPM-Solver++(2S)
|
555 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
556 |
+
r = 1 / 2
|
557 |
+
h = t_next - t
|
558 |
+
s = t + r * h
|
559 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
|
560 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
561 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
|
562 |
+
# Noise addition
|
563 |
+
if sigmas[i + 1] > 0:
|
564 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
565 |
+
return x
|
566 |
+
|
567 |
+
|
568 |
+
@torch.no_grad()
|
569 |
+
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
570 |
+
"""DPM-Solver++ (stochastic)."""
|
571 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
572 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
|
573 |
+
extra_args = {} if extra_args is None else extra_args
|
574 |
+
s_in = x.new_ones([x.shape[0]])
|
575 |
+
sigma_fn = lambda t: t.neg().exp()
|
576 |
+
t_fn = lambda sigma: sigma.log().neg()
|
577 |
+
|
578 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
579 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
580 |
+
if callback is not None:
|
581 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
582 |
+
if sigmas[i + 1] == 0:
|
583 |
+
# Euler method
|
584 |
+
d = to_d(x, sigmas[i], denoised)
|
585 |
+
dt = sigmas[i + 1] - sigmas[i]
|
586 |
+
x = x + d * dt
|
587 |
+
else:
|
588 |
+
# DPM-Solver++
|
589 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
590 |
+
h = t_next - t
|
591 |
+
s = t + h * r
|
592 |
+
fac = 1 / (2 * r)
|
593 |
+
|
594 |
+
# Step 1
|
595 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
596 |
+
s_ = t_fn(sd)
|
597 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
598 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
599 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
600 |
+
|
601 |
+
# Step 2
|
602 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
603 |
+
t_next_ = t_fn(sd)
|
604 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
605 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
606 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
607 |
+
return x
|
608 |
+
|
609 |
+
|
610 |
+
@torch.no_grad()
|
611 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
612 |
+
"""DPM-Solver++(2M)."""
|
613 |
+
extra_args = {} if extra_args is None else extra_args
|
614 |
+
s_in = x.new_ones([x.shape[0]])
|
615 |
+
sigma_fn = lambda t: t.neg().exp()
|
616 |
+
t_fn = lambda sigma: sigma.log().neg()
|
617 |
+
old_denoised = None
|
618 |
+
|
619 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
620 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
621 |
+
if callback is not None:
|
622 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
623 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
624 |
+
h = t_next - t
|
625 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
626 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
627 |
+
else:
|
628 |
+
h_last = t - t_fn(sigmas[i - 1])
|
629 |
+
r = h_last / h
|
630 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
631 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
632 |
+
old_denoised = denoised
|
633 |
+
return x
|
634 |
+
|
635 |
+
|
636 |
+
@torch.no_grad()
|
637 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
638 |
+
"""DPM-Solver++(2M) SDE."""
|
639 |
+
|
640 |
+
if solver_type not in {'heun', 'midpoint'}:
|
641 |
+
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
642 |
+
|
643 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
644 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
|
645 |
+
extra_args = {} if extra_args is None else extra_args
|
646 |
+
s_in = x.new_ones([x.shape[0]])
|
647 |
+
|
648 |
+
old_denoised = None
|
649 |
+
h_last = None
|
650 |
+
|
651 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
652 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
653 |
+
if callback is not None:
|
654 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
655 |
+
if sigmas[i + 1] == 0:
|
656 |
+
# Denoising step
|
657 |
+
x = denoised
|
658 |
+
else:
|
659 |
+
# DPM-Solver++(2M) SDE
|
660 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
661 |
+
h = s - t
|
662 |
+
eta_h = eta * h
|
663 |
+
|
664 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
665 |
+
|
666 |
+
if old_denoised is not None:
|
667 |
+
r = h_last / h
|
668 |
+
if solver_type == 'heun':
|
669 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
670 |
+
elif solver_type == 'midpoint':
|
671 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
672 |
+
|
673 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
674 |
+
|
675 |
+
old_denoised = denoised
|
676 |
+
h_last = h
|
677 |
+
return x
|