File size: 29,750 Bytes
170869f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import math

from scipy import integrate
import torch
from torch import nn
from torchdiffeq import odeint
import torchsde
from tqdm.auto import trange, tqdm

from . import utils


def append_zero(x):
    return torch.cat([x, x.new_zeros([1])])


def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
    """Constructs the noise schedule of Karras et al. (2022)."""
    ramp = torch.linspace(0, 1, n)
    min_inv_rho = sigma_min ** (1 / rho)
    max_inv_rho = sigma_max ** (1 / rho)
    sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
    return append_zero(sigmas).to(device)


def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
    """Constructs an exponential noise schedule."""
    sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
    return append_zero(sigmas)


def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
    """Constructs an polynomial in log sigma noise schedule."""
    ramp = torch.linspace(1, 0, n, device=device) ** rho
    sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
    return append_zero(sigmas)


def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
    """Constructs a continuous VP noise schedule."""
    t = torch.linspace(1, eps_s, n, device=device)
    sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
    return append_zero(sigmas)


def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / utils.append_dims(sigma, x.ndim)


def get_ancestral_step(sigma_from, sigma_to, eta=1.):
    """Calculates the noise level (sigma_down) to step down to and the amount
    of noise to add (sigma_up) when doing an ancestral sampling step."""
    if not eta:
        return sigma_to, 0.
    sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
    sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
    return sigma_down, sigma_up


def default_noise_sampler(x):
    return lambda sigma, sigma_next: torch.randn_like(x)


class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get('w0', torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2 ** 63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
        self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will
            use one BrownianTree per batch item, each with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        dt = sigmas[i + 1] - sigma_hat
        # Euler method
        x = x + d * dt
    return x


@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
    """Ancestral sampling with Euler method steps."""
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        d = to_d(x, sigmas[i], denoised)
        # Euler method
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
    return x


@torch.no_grad()
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        dt = sigmas[i + 1] - sigma_hat
        if sigmas[i + 1] == 0:
            # Euler method
            x = x + d * dt
        else:
            # Heun's method
            x_2 = x + d * dt
            denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
            d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
            d_prime = (d + d_2) / 2
            x = x + d_prime * dt
    return x


@torch.no_grad()
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
    """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
        eps = torch.randn_like(x) * s_noise
        sigma_hat = sigmas[i] * (gamma + 1)
        if gamma > 0:
            x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)
        d = to_d(x, sigma_hat, denoised)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
        if sigmas[i + 1] == 0:
            # Euler method
            dt = sigmas[i + 1] - sigma_hat
            x = x + d * dt
        else:
            # DPM-Solver-2
            sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
            dt_1 = sigma_mid - sigma_hat
            dt_2 = sigmas[i + 1] - sigma_hat
            x_2 = x + d * dt_1
            denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
            d_2 = to_d(x_2, sigma_mid, denoised_2)
            x = x + d_2 * dt_2
    return x


@torch.no_grad()
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
    """Ancestral sampling with DPM-Solver second-order steps."""
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        d = to_d(x, sigmas[i], denoised)
        if sigma_down == 0:
            # Euler method
            dt = sigma_down - sigmas[i]
            x = x + d * dt
        else:
            # DPM-Solver-2
            sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
            dt_1 = sigma_mid - sigmas[i]
            dt_2 = sigma_down - sigmas[i]
            x_2 = x + d * dt_1
            denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
            d_2 = to_d(x_2, sigma_mid, denoised_2)
            x = x + d_2 * dt_2
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
    return x


def linear_multistep_coeff(order, t, i, j):
    if order - 1 > i:
        raise ValueError(f'Order {order} too high for step {i}')
    def fn(tau):
        prod = 1.
        for k in range(order):
            if j == k:
                continue
            prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
        return prod
    return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]


@torch.no_grad()
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    sigmas_cpu = sigmas.detach().cpu().numpy()
    ds = []
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        d = to_d(x, sigmas[i], denoised)
        ds.append(d)
        if len(ds) > order:
            ds.pop(0)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        cur_order = min(i + 1, order)
        coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
        x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
    return x


@torch.no_grad()
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    v = torch.randint_like(x, 2) * 2 - 1
    fevals = 0
    def ode_fn(sigma, x):
        nonlocal fevals
        with torch.enable_grad():
            x = x[0].detach().requires_grad_()
            denoised = model(x, sigma * s_in, **extra_args)
            d = to_d(x, sigma, denoised)
            fevals += 1
            grad = torch.autograd.grad((d * v).sum(), x)[0]
            d_ll = (v * grad).flatten(1).sum(1)
        return d.detach(), d_ll
    x_min = x, x.new_zeros([x.shape[0]])
    t = x.new_tensor([sigma_min, sigma_max])
    sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
    latent, delta_ll = sol[0][-1], sol[1][-1]
    ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
    return ll_prior + delta_ll, {'fevals': fevals}


class PIDStepSizeController:
    """A PID controller for ODE adaptive step size control."""
    def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
        self.h = h
        self.b1 = (pcoeff + icoeff + dcoeff) / order
        self.b2 = -(pcoeff + 2 * dcoeff) / order
        self.b3 = dcoeff / order
        self.accept_safety = accept_safety
        self.eps = eps
        self.errs = []

    def limiter(self, x):
        return 1 + math.atan(x - 1)

    def propose_step(self, error):
        inv_error = 1 / (float(error) + self.eps)
        if not self.errs:
            self.errs = [inv_error, inv_error, inv_error]
        self.errs[0] = inv_error
        factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
        factor = self.limiter(factor)
        accept = factor >= self.accept_safety
        if accept:
            self.errs[2] = self.errs[1]
            self.errs[1] = self.errs[0]
        self.h *= factor
        return accept


class DPMSolver(nn.Module):
    """DPM-Solver. See https://arxiv.org/abs/2206.00927."""

    def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
        super().__init__()
        self.model = model
        self.extra_args = {} if extra_args is None else extra_args
        self.eps_callback = eps_callback
        self.info_callback = info_callback

    def t(self, sigma):
        return -sigma.log()

    def sigma(self, t):
        return t.neg().exp()

    def eps(self, eps_cache, key, x, t, *args, **kwargs):
        if key in eps_cache:
            return eps_cache[key], eps_cache
        sigma = self.sigma(t) * x.new_ones([x.shape[0]])
        eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
        if self.eps_callback is not None:
            self.eps_callback()
        return eps, {key: eps, **eps_cache}

    def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
        eps_cache = {} if eps_cache is None else eps_cache
        h = t_next - t
        eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
        x_1 = x - self.sigma(t_next) * h.expm1() * eps
        return x_1, eps_cache

    def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
        eps_cache = {} if eps_cache is None else eps_cache
        h = t_next - t
        eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
        s1 = t + r1 * h
        u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
        eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
        x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
        return x_2, eps_cache

    def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
        eps_cache = {} if eps_cache is None else eps_cache
        h = t_next - t
        eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
        s1 = t + r1 * h
        s2 = t + r2 * h
        u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
        eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
        u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
        eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
        x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
        return x_3, eps_cache

    def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
        noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
        if not t_end > t_start and eta:
            raise ValueError('eta must be 0 for reverse sampling')

        m = math.floor(nfe / 3) + 1
        ts = torch.linspace(t_start, t_end, m + 1, device=x.device)

        if nfe % 3 == 0:
            orders = [3] * (m - 2) + [2, 1]
        else:
            orders = [3] * (m - 1) + [nfe % 3]

        for i in range(len(orders)):
            eps_cache = {}
            t, t_next = ts[i], ts[i + 1]
            if eta:
                sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
                t_next_ = torch.minimum(t_end, self.t(sd))
                su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
            else:
                t_next_, su = t_next, 0.

            eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
            denoised = x - self.sigma(t) * eps
            if self.info_callback is not None:
                self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})

            if orders[i] == 1:
                x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
            elif orders[i] == 2:
                x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
            else:
                x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)

            x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))

        return x

    def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
        noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
        if order not in {2, 3}:
            raise ValueError('order should be 2 or 3')
        forward = t_end > t_start
        if not forward and eta:
            raise ValueError('eta must be 0 for reverse sampling')
        h_init = abs(h_init) * (1 if forward else -1)
        atol = torch.tensor(atol)
        rtol = torch.tensor(rtol)
        s = t_start
        x_prev = x
        accept = True
        pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
        info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}

        while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
            eps_cache = {}
            t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
            if eta:
                sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
                t_ = torch.minimum(t_end, self.t(sd))
                su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
            else:
                t_, su = t, 0.

            eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
            denoised = x - self.sigma(s) * eps

            if order == 2:
                x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
                x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
            else:
                x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
                x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
            delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
            error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
            accept = pid.propose_step(error)
            if accept:
                x_prev = x_low
                x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
                s = t
                info['n_accept'] += 1
            else:
                info['n_reject'] += 1
            info['nfe'] += order
            info['steps'] += 1

            if self.info_callback is not None:
                self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})

        return x, info

@torch.no_grad()
def sample_dpmpp_2m_v1(model, x, sigmas, extra_args=None, callback=None, disable=None):
    """DPM-Solver++(2M)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()
    old_denoised = None

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
        h = t_next - t
        if old_denoised is None or sigmas[i + 1] == 0:
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
        else:
            h_last = t - t_fn(sigmas[i - 1])
            r = h_last / h
            denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
        sigma_progress = i / len(sigmas)
        adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
        old_denoised = denoised * adjustment_factor
    return x

@torch.no_grad()
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
    """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
    if sigma_min <= 0 or sigma_max <= 0:
        raise ValueError('sigma_min and sigma_max must not be 0')
    with tqdm(total=n, disable=disable) as pbar:
        dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
        if callback is not None:
            dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
        return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)


@torch.no_grad()
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
    """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
    if sigma_min <= 0 or sigma_max <= 0:
        raise ValueError('sigma_min and sigma_max must not be 0')
    with tqdm(disable=disable) as pbar:
        dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
        if callback is not None:
            dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
        x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
    if return_info:
        return x, info
    return x


@torch.no_grad()
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
    """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        if sigma_down == 0:
            # Euler method
            d = to_d(x, sigmas[i], denoised)
            dt = sigma_down - sigmas[i]
            x = x + d * dt
        else:
            # DPM-Solver++(2S)
            t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
            r = 1 / 2
            h = t_next - t
            s = t + r * h
            x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
            denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
        # Noise addition
        if sigmas[i + 1] > 0:
            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
    return x


@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
    """DPM-Solver++ (stochastic)."""
    sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
    noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        if sigmas[i + 1] == 0:
            # Euler method
            d = to_d(x, sigmas[i], denoised)
            dt = sigmas[i + 1] - sigmas[i]
            x = x + d * dt
        else:
            # DPM-Solver++
            t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
            h = t_next - t
            s = t + h * r
            fac = 1 / (2 * r)

            # Step 1
            sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
            s_ = t_fn(sd)
            x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
            x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
            denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)

            # Step 2
            sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
            t_next_ = t_fn(sd)
            denoised_d = (1 - fac) * denoised + fac * denoised_2
            x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
            x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
    return x


@torch.no_grad()
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
    """DPM-Solver++(2M)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()
    old_denoised = None

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
        h = t_next - t
        if old_denoised is None or sigmas[i + 1] == 0:
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
        else:
            h_last = t - t_fn(sigmas[i - 1])
            r = h_last / h
            denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
            x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
        old_denoised = denoised
    return x


@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
    """DPM-Solver++(2M) SDE."""

    if solver_type not in {'heun', 'midpoint'}:
        raise ValueError('solver_type must be \'heun\' or \'midpoint\'')

    sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
    noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])

    old_denoised = None
    h_last = None

    for i in trange(len(sigmas) - 1, disable=disable):
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        if callback is not None:
            callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        if sigmas[i + 1] == 0:
            # Denoising step
            x = denoised
        else:
            # DPM-Solver++(2M) SDE
            t, s = -sigmas[i].log(), -sigmas[i + 1].log()
            h = s - t
            eta_h = eta * h

            x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised

            if old_denoised is not None:
                r = h_last / h
                if solver_type == 'heun':
                    x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
                elif solver_type == 'midpoint':
                    x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)

            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise

        old_denoised = denoised
        h_last = h
    return x