PVC-InternVL2-8B / modeling_intern_vit_pvc.py
cyyang822's picture
upload checkpoint
87b74fc
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import math
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.layers import DropPath
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutput,
BaseModelOutputWithPooling)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import \
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_func
has_flash_attn = True
except:
print('FlashAttention2 is not installed.')
has_flash_attn = False
logger = logging.get_logger(__name__)
class FlashAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
max_s=None, need_weights=False):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = seqlen
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
indices, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads)
else:
assert max_s is not None
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
return output, None
class InternRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from apex.normalization import FusedRMSNorm
InternRMSNorm = FusedRMSNorm # noqa
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
except ImportError:
# using the normal InternRMSNorm
pass
except Exception:
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
pass
NORM2FN = {
'rms_norm': InternRMSNorm,
'layer_norm': nn.LayerNorm,
}
class InternVisionEmbeddings(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim),
)
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
def _get_pos_embed(self, pos_embed, H, W):
target_dtype = pos_embed.dtype
pos_embed = pos_embed.float().reshape(
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
return pos_embed
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
batch_size, _, height, width = patch_embeds.shape
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
position_embedding = torch.cat([
self.position_embedding[:, :1, :],
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
], dim=1)
embeddings = embeddings + position_embedding.to(target_dtype)
return embeddings
class InternAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_flash_attn = config.use_flash_attn and has_flash_attn
if config.use_flash_attn and not has_flash_attn:
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
f' {self.num_heads}).'
)
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_dropout)
self.proj_drop = nn.Dropout(config.dropout)
self.qk_normalization = config.qk_normalization
if self.qk_normalization:
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
if self.use_flash_attn:
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
def _naive_attn(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
)
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
outs = self.proj_drop(outs)
return outs
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
return x
class InternMLP(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.act = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def generate_batch_temporal_mask(split_sizes, device='cpu'):
"""
generate the temporal (padding) mask of a batch
Args:
split_sizes: List[num frames]
Returns:
temporal_mask: BoolTensor(B, T), `True` means taking, `False` means padding
"""
B, T = len(split_sizes), max(split_sizes)
split_sizes = torch.tensor(split_sizes, dtype=torch.long, device=device)
temporal_idx = torch.arange(T, dtype=torch.long, device=device)[None].repeat((B, 1))
temporal_mask = temporal_idx < split_sizes[:, None]
return temporal_mask
def concat_batch_frames(images, split_sizes=None, temporal_mask=None):
"""
B, T, L, D -> concat(T), L, D
"""
if temporal_mask is None:
assert split_sizes is not None
temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device)
return images[temporal_mask]
def stack_batch_frames(images, split_sizes, return_mask=False):
"""
concat(T), L, D -> B, T, L, D
"""
B, T = len(split_sizes), max(split_sizes)
images_stack = images.new_zeros((B, T, *images.shape[1:]))
temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device)
images_stack[temporal_mask] = images
if return_mask:
return images_stack, temporal_mask
return images_stack
def temporal_idx_abs_to_rel(temporal_idx, split_sizes):
stacked_temporal_idx = stack_batch_frames(temporal_idx, split_sizes)
length = stacked_temporal_idx.max(dim=-1, keepdim=True)[0]
length = length.clip(min=1)
rel_temporal_idx = stacked_temporal_idx.float() / length.float()
rel_temporal_idx = concat_batch_frames(rel_temporal_idx, split_sizes)
return rel_temporal_idx
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
original_dtype = timesteps.dtype
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb.to(original_dtype)
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 0, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb
class AdaLayerNorm(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine=False,
eps=1e-5,
bias=True,
norm_type="layer_norm",
zero_init=False,
):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if zero_init:
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
print('AdaLN zero init')
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
class TokenTemporalAttention(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
d_model = config.hidden_size
temporal_num_heads = config.num_attention_heads
self.temporal_attn = nn.MultiheadAttention(d_model, temporal_num_heads, batch_first=True)
self.timestep_scale = self.config.relative_timestep_scale
self.time_embed = nn.Sequential(
Timesteps(num_channels=256),
nn.Linear(256, d_model),
nn.SiLU(),
nn.Linear(d_model, d_model),
)
self.adaln = AdaLayerNorm(d_model, d_model, eps=config.layer_norm_eps,
zero_init=self.config.temporal_adaln_zero_init)
if self.config.temporal_adaln_hidden_condition:
self.hidden_condition_proj = nn.Sequential(
nn.Linear(d_model, d_model),
nn.SiLU(), # default use `SiLU`
nn.Linear(d_model, d_model)
)
if self.config.temporal_alpha_channelwise:
self.alpha_xattn = nn.Parameter(self.config.temporal_alpha_init * torch.ones(d_model),
requires_grad=True)
else:
self.alpha_xattn = nn.Parameter(torch.tensor(self.config.temporal_alpha_init), requires_grad=True)
def forward(self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
place: Optional[str] = None,
temporal_id: Optional[torch.LongTensor] = None,
):
# use flash attention 2
if self.config.use_flash_attn:
return self._forward_flash_attention_2(hidden_states, split_sizes, place, temporal_id)
# stack temporal dim
hidden_states = stack_batch_frames(hidden_states, split_sizes) # concat(T) L D -> B T L D
residual = hidden_states
B, T, L, D = hidden_states.shape
x = hidden_states.transpose(1, 2).flatten(0, 1) # B T L D -> B*L, T, D
# attn & padding mask
temporal_mask = generate_batch_temporal_mask(split_sizes, device=hidden_states.device) # (B, T), 0 indicate masked out
temporal_mask = temporal_mask.unsqueeze(1).expand(B, L, T).flatten(0, 1) # B T -> B L T -> B*L, T
if self.config.temporal_causal:
attn_mask = torch.ones(T, T, dtype=torch.bool, device=hidden_states.device).tril(diagonal=0) # (T, T), 0 indicate masked out
else:
attn_mask = None
# temporal AdaLN
timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes)
timestep = timestep * self.timestep_scale
time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # N D
time_condition = stack_batch_frames(time_condition, split_sizes) # N D -> B T D
time_condition = time_condition.unsqueeze(1).repeat(1, L, 1, 1).flatten(0, 1) # B T D -> B L T D -> B*L, T, D
condition = time_condition
if self.config.temporal_adaln_hidden_condition:
condition = condition + self.hidden_condition_proj(x)
x = self.adaln(x, condition)
# pass attention
q = k = v = x
attn_mask = ~attn_mask if attn_mask is not None else None
temporal_mask = ~temporal_mask
# attn_mask, temporal_mask = ~attn_mask, ~temporal_mask, MHSA use 1 to indicate masked out
attn_out = self.temporal_attn(q, k, v, attn_mask=attn_mask, key_padding_mask=temporal_mask)
x = attn_out[0]
# add to residual
x = x.view(B, L, T, D).transpose(1, 2) # B*L, T, D -> B T L D
hidden_states = residual + x * self.alpha_xattn
# concat temporal dim
hidden_states = concat_batch_frames(hidden_states, split_sizes) # B T L D -> concat(T) L D
return hidden_states
def _forward_flash_attention_2(self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
place: Optional[str] = None,
temporal_id: Optional[torch.LongTensor] = None,
):
B, T = len(split_sizes), max(split_sizes)
N, L, D = hidden_states.shape
residual = hidden_states
hidden_states = hidden_states.transpose(0, 1).flatten(0, 1) # (N, L, D) -> (L, N, D) -> (L*N, D)
# temporal AdaLN
timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes)
timestep = timestep * self.timestep_scale
time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # (N, D)
time_condition = time_condition.unsqueeze(0).repeat(L, 1, 1).flatten(0, 1) # (L*N, D)
condition = time_condition
if self.config.temporal_adaln_hidden_condition:
condition = condition + self.hidden_condition_proj(hidden_states)
hidden_states = self.adaln(hidden_states, condition)
q = k = v = hidden_states # (L*N, D)
w_q, w_k, w_v = self.temporal_attn.in_proj_weight.chunk(3)
b_q, b_k, b_v = self.temporal_attn.in_proj_bias.chunk(3)
q = F.linear(q, w_q, b_q)
k = F.linear(k, w_k, b_k)
v = F.linear(v, w_v, b_v)
num_heads, head_dim = self.temporal_attn.num_heads, self.temporal_attn.head_dim
q = q.view(q.shape[0], num_heads, head_dim)
k = k.view(k.shape[0], num_heads, head_dim)
v = v.view(v.shape[0], num_heads, head_dim)
cu_len = torch.cumsum(torch.tensor(split_sizes, dtype=torch.int, device=hidden_states.device), dim=0)
cu_lens = [cu_len + i * N for i in range(L)]
cu_lens = torch.cat([torch.zeros((1, ), device=hidden_states.device)] + cu_lens).to(torch.int)
max_len = max(split_sizes)
out = flash_attn_varlen_func(
q=q, k=k, v=v,
cu_seqlens_q=cu_lens,
cu_seqlens_k=cu_lens,
max_seqlen_q=max_len,
max_seqlen_k=max_len,
causal=self.config.temporal_causal,
)
out = out.view(q.shape[0], num_heads*head_dim)
out = self.temporal_attn.out_proj(out) # (L*N, D)
out = out.view(L, N, D).transpose(0, 1).contiguous() # (L*N, D) -> (L, N, D) -> (N, L, D)
# add to residual
hidden_states = residual + out * self.alpha_xattn
return hidden_states
class InternVisionTemporalEncoderLayer(nn.Module):
def __init__(self, config: InternVisionConfig, drop_path_rate: float, layer_idx: int=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.embed_dim = config.hidden_size
self.intermediate_size = config.intermediate_size
self.norm_type = config.norm_type
self.attn = InternAttention(config)
self.mlp = InternMLP(config)
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def initialize_temporal_module(self):
temporal_layer_ids = self.config.temporal_layer_ids
if (temporal_layer_ids is not None) and self.layer_idx not in temporal_layer_ids:
self.temporal_module = None
return
self.temporal_module = TokenTemporalAttention(self.config)
self.temporal_module_place = self.config.temporal_module_place
param_names = [k for k, v in self.temporal_module.named_parameters()]
print(f"[vision temporal model] layer {self.layer_idx} initialize temporal module. "
f"Place: {self.temporal_module_place}. Parameters: {param_names}")
def forward(
self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
"""
Args:
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
"""
if (self.temporal_module is not None) and ('before_self_attn' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='before_self_attn')
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
# default: pass temporal module (between self-attn and MLP)
if (self.temporal_module is not None) and ('after_self_attn' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_self_attn')
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
if (self.temporal_module is not None) and ('after_mlp' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_mlp')
return hidden_states
class InternVisionTemporalEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`InternEncoderLayer`].
Args:
config (`InternConfig`):
The corresponding vision configuration for the `InternEncoder`.
"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layers = nn.ModuleList([
InternVisionTemporalEncoderLayer(config, dpr[idx], layer_idx=idx)
for idx in range(config.num_hidden_layers)
])
self.gradient_checkpointing = True
def forward(
self,
inputs_embeds,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
encoder_layer,
hidden_states,
split_sizes,
temporal_id)
else:
layer_outputs = encoder_layer(
hidden_states,
split_sizes=split_sizes,
temporal_id=temporal_id,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states
)
class InternVisionTemporalModel(PreTrainedModel):
main_input_name = 'pixel_values'
_supports_flash_attn_2 = True
config_class = InternVisionConfig
_no_split_modules = ['InternVisionTemporalEncoderLayer']
def __init__(self, config: InternVisionConfig, delay_init_new_param=False):
super().__init__(config)
self.config = config
self.embeddings = InternVisionEmbeddings(config)
self.encoder = InternVisionTemporalEncoder(config)
self.new_param_inited = False
if delay_init_new_param:
print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}, temporal module should be initalized later")
else:
print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}")
self.initialize_temporal_module()
def initialize_temporal_module(self):
if self.new_param_inited:
print("[vision temporal model] Warning!!! temporal modules have been initialized, skip.")
return
print("[vision temporal model] Initializing temporal modules...")
for layer in self.encoder.layers:
layer.initialize_temporal_module()
self.new_param_inited = True
def resize_pos_embeddings(self, old_size, new_size, patch_size):
pos_emb = self.embeddings.position_embedding
_, num_positions, embed_dim = pos_emb.shape
cls_emb = pos_emb[:, :1, :]
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
self.embeddings.position_embedding = nn.Parameter(pos_emb)
self.embeddings.image_size = new_size
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and pixel_embeds is None:
raise ValueError('You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
else:
if len(pixel_values.shape) == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
split_sizes=split_sizes,
temporal_id=temporal_id,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)