# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- from typing import Optional, Tuple, Union import math import torch import torch.nn.functional as F import torch.utils.checkpoint from einops import rearrange from timm.models.layers import DropPath from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import (BaseModelOutput, BaseModelOutputWithPooling) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from .configuration_intern_vit import InternVisionConfig try: from flash_attn.bert_padding import pad_input, unpad_input from flash_attn.flash_attn_interface import \ flash_attn_varlen_qkvpacked_func, flash_attn_varlen_func has_flash_attn = True except: print('FlashAttention2 is not installed.') has_flash_attn = False logger = logging.get_logger(__name__) class FlashAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None if unpadded: (nnz, 3, h, d) key_padding_mask: a bool tensor of shape (B, S) """ assert not need_weights assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_varlen_qkvpacked_func( x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) return output, None class InternRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) try: from apex.normalization import FusedRMSNorm InternRMSNorm = FusedRMSNorm # noqa logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm') except ImportError: # using the normal InternRMSNorm pass except Exception: logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm') pass NORM2FN = { 'rms_norm': InternRMSNorm, 'layer_norm': nn.LayerNorm, } class InternVisionEmbeddings(nn.Module): def __init__(self, config: InternVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter( torch.randn(1, 1, self.embed_dim), ) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def _get_pos_embed(self, pos_embed, H, W): target_dtype = pos_embed.dtype pos_embed = pos_embed.float().reshape( 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype) return pos_embed def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height] batch_size, _, height, width = patch_embeds.shape patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) position_embedding = torch.cat([ self.position_embedding[:, :1, :], self._get_pos_embed(self.position_embedding[:, 1:, :], height, width) ], dim=1) embeddings = embeddings + position_embedding.to(target_dtype) return embeddings class InternAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: InternVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.use_flash_attn = config.use_flash_attn and has_flash_attn if config.use_flash_attn and not has_flash_attn: print('Warning: Flash Attention is not available, use_flash_attn is set to False.') self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' f' {self.num_heads}).' ) self.scale = self.head_dim ** -0.5 self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) self.attn_drop = nn.Dropout(config.attention_dropout) self.proj_drop = nn.Dropout(config.dropout) self.qk_normalization = config.qk_normalization if self.qk_normalization: self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) if self.use_flash_attn: self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) self.proj = nn.Linear(self.embed_dim, self.embed_dim) def _naive_attn(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.qk_normalization: B_, H_, N_, D_ = q.shape q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) attn = ((q * self.scale) @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def _flash_attn(self, x, key_padding_mask=None, need_weights=False): qkv = self.qkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) if self.qk_normalization: q, k, v = qkv.unbind(2) q = self.q_norm(q.flatten(-2, -1)).view(q.shape) k = self.k_norm(k.flatten(-2, -1)).view(k.shape) qkv = torch.stack([q, k, v], dim=2) context, _ = self.inner_attn( qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False ) outs = self.proj(rearrange(context, 'b s h d -> b s (h d)')) outs = self.proj_drop(outs) return outs def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states) return x class InternMLP(nn.Module): def __init__(self, config: InternVisionConfig): super().__init__() self.config = config self.act = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def generate_batch_temporal_mask(split_sizes, device='cpu'): """ generate the temporal (padding) mask of a batch Args: split_sizes: List[num frames] Returns: temporal_mask: BoolTensor(B, T), `True` means taking, `False` means padding """ B, T = len(split_sizes), max(split_sizes) split_sizes = torch.tensor(split_sizes, dtype=torch.long, device=device) temporal_idx = torch.arange(T, dtype=torch.long, device=device)[None].repeat((B, 1)) temporal_mask = temporal_idx < split_sizes[:, None] return temporal_mask def concat_batch_frames(images, split_sizes=None, temporal_mask=None): """ B, T, L, D -> concat(T), L, D """ if temporal_mask is None: assert split_sizes is not None temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device) return images[temporal_mask] def stack_batch_frames(images, split_sizes, return_mask=False): """ concat(T), L, D -> B, T, L, D """ B, T = len(split_sizes), max(split_sizes) images_stack = images.new_zeros((B, T, *images.shape[1:])) temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device) images_stack[temporal_mask] = images if return_mask: return images_stack, temporal_mask return images_stack def temporal_idx_abs_to_rel(temporal_idx, split_sizes): stacked_temporal_idx = stack_batch_frames(temporal_idx, split_sizes) length = stacked_temporal_idx.max(dim=-1, keepdim=True)[0] length = length.clip(min=1) rel_temporal_idx = stacked_temporal_idx.float() / length.float() rel_temporal_idx = concat_batch_frames(rel_temporal_idx, split_sizes) return rel_temporal_idx def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. Args timesteps (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. embedding_dim (int): the dimension of the output. flip_sin_to_cos (bool): Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) downscale_freq_shift (float): Controls the delta between frequencies between dimensions scale (float): Scaling factor applied to the embeddings. max_period (int): Controls the maximum frequency of the embeddings Returns torch.Tensor: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" original_dtype = timesteps.dtype half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb.to(original_dtype) class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 0, scale: int = 1): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift self.scale = scale def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, scale=self.scale, ) return t_emb class AdaLayerNorm(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine=False, eps=1e-5, bias=True, norm_type="layer_norm", zero_init=False, ): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) if zero_init: nn.init.zeros_(self.linear.weight) nn.init.zeros_(self.linear.bias) print('AdaLN zero init') if norm_type == "layer_norm": self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias) else: raise ValueError(f"unknown norm_type {norm_type}") def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) scale, shift = torch.chunk(emb, 2, dim=-1) x = self.norm(x) * (1 + scale) + shift return x class TokenTemporalAttention(nn.Module): def __init__(self, config: InternVisionConfig): super().__init__() self.config = config d_model = config.hidden_size temporal_num_heads = config.num_attention_heads self.temporal_attn = nn.MultiheadAttention(d_model, temporal_num_heads, batch_first=True) self.timestep_scale = self.config.relative_timestep_scale self.time_embed = nn.Sequential( Timesteps(num_channels=256), nn.Linear(256, d_model), nn.SiLU(), nn.Linear(d_model, d_model), ) self.adaln = AdaLayerNorm(d_model, d_model, eps=config.layer_norm_eps, zero_init=self.config.temporal_adaln_zero_init) if self.config.temporal_adaln_hidden_condition: self.hidden_condition_proj = nn.Sequential( nn.Linear(d_model, d_model), nn.SiLU(), # default use `SiLU` nn.Linear(d_model, d_model) ) if self.config.temporal_alpha_channelwise: self.alpha_xattn = nn.Parameter(self.config.temporal_alpha_init * torch.ones(d_model), requires_grad=True) else: self.alpha_xattn = nn.Parameter(torch.tensor(self.config.temporal_alpha_init), requires_grad=True) def forward(self, hidden_states: torch.Tensor, split_sizes: Optional[list] = None, place: Optional[str] = None, temporal_id: Optional[torch.LongTensor] = None, ): # use flash attention 2 if self.config.use_flash_attn: return self._forward_flash_attention_2(hidden_states, split_sizes, place, temporal_id) # stack temporal dim hidden_states = stack_batch_frames(hidden_states, split_sizes) # concat(T) L D -> B T L D residual = hidden_states B, T, L, D = hidden_states.shape x = hidden_states.transpose(1, 2).flatten(0, 1) # B T L D -> B*L, T, D # attn & padding mask temporal_mask = generate_batch_temporal_mask(split_sizes, device=hidden_states.device) # (B, T), 0 indicate masked out temporal_mask = temporal_mask.unsqueeze(1).expand(B, L, T).flatten(0, 1) # B T -> B L T -> B*L, T if self.config.temporal_causal: attn_mask = torch.ones(T, T, dtype=torch.bool, device=hidden_states.device).tril(diagonal=0) # (T, T), 0 indicate masked out else: attn_mask = None # temporal AdaLN timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes) timestep = timestep * self.timestep_scale time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # N D time_condition = stack_batch_frames(time_condition, split_sizes) # N D -> B T D time_condition = time_condition.unsqueeze(1).repeat(1, L, 1, 1).flatten(0, 1) # B T D -> B L T D -> B*L, T, D condition = time_condition if self.config.temporal_adaln_hidden_condition: condition = condition + self.hidden_condition_proj(x) x = self.adaln(x, condition) # pass attention q = k = v = x attn_mask = ~attn_mask if attn_mask is not None else None temporal_mask = ~temporal_mask # attn_mask, temporal_mask = ~attn_mask, ~temporal_mask, MHSA use 1 to indicate masked out attn_out = self.temporal_attn(q, k, v, attn_mask=attn_mask, key_padding_mask=temporal_mask) x = attn_out[0] # add to residual x = x.view(B, L, T, D).transpose(1, 2) # B*L, T, D -> B T L D hidden_states = residual + x * self.alpha_xattn # concat temporal dim hidden_states = concat_batch_frames(hidden_states, split_sizes) # B T L D -> concat(T) L D return hidden_states def _forward_flash_attention_2(self, hidden_states: torch.Tensor, split_sizes: Optional[list] = None, place: Optional[str] = None, temporal_id: Optional[torch.LongTensor] = None, ): B, T = len(split_sizes), max(split_sizes) N, L, D = hidden_states.shape residual = hidden_states hidden_states = hidden_states.transpose(0, 1).flatten(0, 1) # (N, L, D) -> (L, N, D) -> (L*N, D) # temporal AdaLN timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes) timestep = timestep * self.timestep_scale time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # (N, D) time_condition = time_condition.unsqueeze(0).repeat(L, 1, 1).flatten(0, 1) # (L*N, D) condition = time_condition if self.config.temporal_adaln_hidden_condition: condition = condition + self.hidden_condition_proj(hidden_states) hidden_states = self.adaln(hidden_states, condition) q = k = v = hidden_states # (L*N, D) w_q, w_k, w_v = self.temporal_attn.in_proj_weight.chunk(3) b_q, b_k, b_v = self.temporal_attn.in_proj_bias.chunk(3) q = F.linear(q, w_q, b_q) k = F.linear(k, w_k, b_k) v = F.linear(v, w_v, b_v) num_heads, head_dim = self.temporal_attn.num_heads, self.temporal_attn.head_dim q = q.view(q.shape[0], num_heads, head_dim) k = k.view(k.shape[0], num_heads, head_dim) v = v.view(v.shape[0], num_heads, head_dim) cu_len = torch.cumsum(torch.tensor(split_sizes, dtype=torch.int, device=hidden_states.device), dim=0) cu_lens = [cu_len + i * N for i in range(L)] cu_lens = torch.cat([torch.zeros((1, ), device=hidden_states.device)] + cu_lens).to(torch.int) max_len = max(split_sizes) out = flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=cu_lens, cu_seqlens_k=cu_lens, max_seqlen_q=max_len, max_seqlen_k=max_len, causal=self.config.temporal_causal, ) out = out.view(q.shape[0], num_heads*head_dim) out = self.temporal_attn.out_proj(out) # (L*N, D) out = out.view(L, N, D).transpose(0, 1).contiguous() # (L*N, D) -> (L, N, D) -> (N, L, D) # add to residual hidden_states = residual + out * self.alpha_xattn return hidden_states class InternVisionTemporalEncoderLayer(nn.Module): def __init__(self, config: InternVisionConfig, drop_path_rate: float, layer_idx: int=None): super().__init__() self.config = config self.layer_idx = layer_idx self.embed_dim = config.hidden_size self.intermediate_size = config.intermediate_size self.norm_type = config.norm_type self.attn = InternAttention(config) self.mlp = InternMLP(config) self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() def initialize_temporal_module(self): temporal_layer_ids = self.config.temporal_layer_ids if (temporal_layer_ids is not None) and self.layer_idx not in temporal_layer_ids: self.temporal_module = None return self.temporal_module = TokenTemporalAttention(self.config) self.temporal_module_place = self.config.temporal_module_place param_names = [k for k, v in self.temporal_module.named_parameters()] print(f"[vision temporal model] layer {self.layer_idx} initialize temporal module. " f"Place: {self.temporal_module_place}. Parameters: {param_names}") def forward( self, hidden_states: torch.Tensor, split_sizes: Optional[list] = None, temporal_id: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: """ Args: hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` """ if (self.temporal_module is not None) and ('before_self_attn' in self.temporal_module_place): hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='before_self_attn') hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1) # default: pass temporal module (between self-attn and MLP) if (self.temporal_module is not None) and ('after_self_attn' in self.temporal_module_place): hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_self_attn') hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2) if (self.temporal_module is not None) and ('after_mlp' in self.temporal_module_place): hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_mlp') return hidden_states class InternVisionTemporalEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`InternEncoderLayer`]. Args: config (`InternConfig`): The corresponding vision configuration for the `InternEncoder`. """ def __init__(self, config: InternVisionConfig): super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layers = nn.ModuleList([ InternVisionTemporalEncoderLayer(config, dpr[idx], layer_idx=idx) for idx in range(config.num_hidden_layers) ]) self.gradient_checkpointing = True def forward( self, inputs_embeds, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, split_sizes: Optional[list] = None, temporal_id: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = torch.utils.checkpoint.checkpoint( encoder_layer, hidden_states, split_sizes, temporal_id) else: layer_outputs = encoder_layer( hidden_states, split_sizes=split_sizes, temporal_id=temporal_id, ) hidden_states = layer_outputs if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states ) class InternVisionTemporalModel(PreTrainedModel): main_input_name = 'pixel_values' _supports_flash_attn_2 = True config_class = InternVisionConfig _no_split_modules = ['InternVisionTemporalEncoderLayer'] def __init__(self, config: InternVisionConfig, delay_init_new_param=False): super().__init__(config) self.config = config self.embeddings = InternVisionEmbeddings(config) self.encoder = InternVisionTemporalEncoder(config) self.new_param_inited = False if delay_init_new_param: print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}, temporal module should be initalized later") else: print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}") self.initialize_temporal_module() def initialize_temporal_module(self): if self.new_param_inited: print("[vision temporal model] Warning!!! temporal modules have been initialized, skip.") return print("[vision temporal model] Initializing temporal modules...") for layer in self.encoder.layers: layer.initialize_temporal_module() self.new_param_inited = True def resize_pos_embeddings(self, old_size, new_size, patch_size): pos_emb = self.embeddings.position_embedding _, num_positions, embed_dim = pos_emb.shape cls_emb = pos_emb[:, :1, :] pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False) pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) pos_emb = torch.cat([cls_emb, pos_emb], dim=1) self.embeddings.position_embedding = nn.Parameter(pos_emb) self.embeddings.image_size = new_size logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size)) def get_input_embeddings(self): return self.embeddings def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_embeds: Optional[torch.FloatTensor] = None, split_sizes: Optional[list] = None, temporal_id: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None and pixel_embeds is None: raise ValueError('You have to specify pixel_values or pixel_embeds') if pixel_embeds is not None: hidden_states = pixel_embeds else: if len(pixel_values.shape) == 4: hidden_states = self.embeddings(pixel_values) else: raise ValueError(f'wrong pixel_values size: {pixel_values.shape}') encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_hidden_states=output_hidden_states, return_dict=return_dict, split_sizes=split_sizes, temporal_id=temporal_id, ) last_hidden_state = encoder_outputs.last_hidden_state pooled_output = last_hidden_state[:, 0, :] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )