File size: 32,536 Bytes
87b74fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import math
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.layers import DropPath
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutput,
BaseModelOutputWithPooling)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import \
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_func
has_flash_attn = True
except:
print('FlashAttention2 is not installed.')
has_flash_attn = False
logger = logging.get_logger(__name__)
class FlashAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
max_s=None, need_weights=False):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = seqlen
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
indices, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads)
else:
assert max_s is not None
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
return output, None
class InternRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from apex.normalization import FusedRMSNorm
InternRMSNorm = FusedRMSNorm # noqa
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
except ImportError:
# using the normal InternRMSNorm
pass
except Exception:
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
pass
NORM2FN = {
'rms_norm': InternRMSNorm,
'layer_norm': nn.LayerNorm,
}
class InternVisionEmbeddings(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim),
)
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
def _get_pos_embed(self, pos_embed, H, W):
target_dtype = pos_embed.dtype
pos_embed = pos_embed.float().reshape(
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
return pos_embed
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
batch_size, _, height, width = patch_embeds.shape
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
position_embedding = torch.cat([
self.position_embedding[:, :1, :],
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
], dim=1)
embeddings = embeddings + position_embedding.to(target_dtype)
return embeddings
class InternAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_flash_attn = config.use_flash_attn and has_flash_attn
if config.use_flash_attn and not has_flash_attn:
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
f' {self.num_heads}).'
)
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_dropout)
self.proj_drop = nn.Dropout(config.dropout)
self.qk_normalization = config.qk_normalization
if self.qk_normalization:
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
if self.use_flash_attn:
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
def _naive_attn(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
)
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
outs = self.proj_drop(outs)
return outs
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
return x
class InternMLP(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.act = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def generate_batch_temporal_mask(split_sizes, device='cpu'):
"""
generate the temporal (padding) mask of a batch
Args:
split_sizes: List[num frames]
Returns:
temporal_mask: BoolTensor(B, T), `True` means taking, `False` means padding
"""
B, T = len(split_sizes), max(split_sizes)
split_sizes = torch.tensor(split_sizes, dtype=torch.long, device=device)
temporal_idx = torch.arange(T, dtype=torch.long, device=device)[None].repeat((B, 1))
temporal_mask = temporal_idx < split_sizes[:, None]
return temporal_mask
def concat_batch_frames(images, split_sizes=None, temporal_mask=None):
"""
B, T, L, D -> concat(T), L, D
"""
if temporal_mask is None:
assert split_sizes is not None
temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device)
return images[temporal_mask]
def stack_batch_frames(images, split_sizes, return_mask=False):
"""
concat(T), L, D -> B, T, L, D
"""
B, T = len(split_sizes), max(split_sizes)
images_stack = images.new_zeros((B, T, *images.shape[1:]))
temporal_mask = generate_batch_temporal_mask(split_sizes, device=images.device)
images_stack[temporal_mask] = images
if return_mask:
return images_stack, temporal_mask
return images_stack
def temporal_idx_abs_to_rel(temporal_idx, split_sizes):
stacked_temporal_idx = stack_batch_frames(temporal_idx, split_sizes)
length = stacked_temporal_idx.max(dim=-1, keepdim=True)[0]
length = length.clip(min=1)
rel_temporal_idx = stacked_temporal_idx.float() / length.float()
rel_temporal_idx = concat_batch_frames(rel_temporal_idx, split_sizes)
return rel_temporal_idx
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
original_dtype = timesteps.dtype
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb.to(original_dtype)
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 0, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb
class AdaLayerNorm(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine=False,
eps=1e-5,
bias=True,
norm_type="layer_norm",
zero_init=False,
):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if zero_init:
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
print('AdaLN zero init')
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
class TokenTemporalAttention(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
d_model = config.hidden_size
temporal_num_heads = config.num_attention_heads
self.temporal_attn = nn.MultiheadAttention(d_model, temporal_num_heads, batch_first=True)
self.timestep_scale = self.config.relative_timestep_scale
self.time_embed = nn.Sequential(
Timesteps(num_channels=256),
nn.Linear(256, d_model),
nn.SiLU(),
nn.Linear(d_model, d_model),
)
self.adaln = AdaLayerNorm(d_model, d_model, eps=config.layer_norm_eps,
zero_init=self.config.temporal_adaln_zero_init)
if self.config.temporal_adaln_hidden_condition:
self.hidden_condition_proj = nn.Sequential(
nn.Linear(d_model, d_model),
nn.SiLU(), # default use `SiLU`
nn.Linear(d_model, d_model)
)
if self.config.temporal_alpha_channelwise:
self.alpha_xattn = nn.Parameter(self.config.temporal_alpha_init * torch.ones(d_model),
requires_grad=True)
else:
self.alpha_xattn = nn.Parameter(torch.tensor(self.config.temporal_alpha_init), requires_grad=True)
def forward(self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
place: Optional[str] = None,
temporal_id: Optional[torch.LongTensor] = None,
):
# use flash attention 2
if self.config.use_flash_attn:
return self._forward_flash_attention_2(hidden_states, split_sizes, place, temporal_id)
# stack temporal dim
hidden_states = stack_batch_frames(hidden_states, split_sizes) # concat(T) L D -> B T L D
residual = hidden_states
B, T, L, D = hidden_states.shape
x = hidden_states.transpose(1, 2).flatten(0, 1) # B T L D -> B*L, T, D
# attn & padding mask
temporal_mask = generate_batch_temporal_mask(split_sizes, device=hidden_states.device) # (B, T), 0 indicate masked out
temporal_mask = temporal_mask.unsqueeze(1).expand(B, L, T).flatten(0, 1) # B T -> B L T -> B*L, T
if self.config.temporal_causal:
attn_mask = torch.ones(T, T, dtype=torch.bool, device=hidden_states.device).tril(diagonal=0) # (T, T), 0 indicate masked out
else:
attn_mask = None
# temporal AdaLN
timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes)
timestep = timestep * self.timestep_scale
time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # N D
time_condition = stack_batch_frames(time_condition, split_sizes) # N D -> B T D
time_condition = time_condition.unsqueeze(1).repeat(1, L, 1, 1).flatten(0, 1) # B T D -> B L T D -> B*L, T, D
condition = time_condition
if self.config.temporal_adaln_hidden_condition:
condition = condition + self.hidden_condition_proj(x)
x = self.adaln(x, condition)
# pass attention
q = k = v = x
attn_mask = ~attn_mask if attn_mask is not None else None
temporal_mask = ~temporal_mask
# attn_mask, temporal_mask = ~attn_mask, ~temporal_mask, MHSA use 1 to indicate masked out
attn_out = self.temporal_attn(q, k, v, attn_mask=attn_mask, key_padding_mask=temporal_mask)
x = attn_out[0]
# add to residual
x = x.view(B, L, T, D).transpose(1, 2) # B*L, T, D -> B T L D
hidden_states = residual + x * self.alpha_xattn
# concat temporal dim
hidden_states = concat_batch_frames(hidden_states, split_sizes) # B T L D -> concat(T) L D
return hidden_states
def _forward_flash_attention_2(self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
place: Optional[str] = None,
temporal_id: Optional[torch.LongTensor] = None,
):
B, T = len(split_sizes), max(split_sizes)
N, L, D = hidden_states.shape
residual = hidden_states
hidden_states = hidden_states.transpose(0, 1).flatten(0, 1) # (N, L, D) -> (L, N, D) -> (L*N, D)
# temporal AdaLN
timestep = temporal_idx_abs_to_rel(temporal_id, split_sizes)
timestep = timestep * self.timestep_scale
time_condition = self.time_embed(timestep.to(hidden_states.dtype)) # (N, D)
time_condition = time_condition.unsqueeze(0).repeat(L, 1, 1).flatten(0, 1) # (L*N, D)
condition = time_condition
if self.config.temporal_adaln_hidden_condition:
condition = condition + self.hidden_condition_proj(hidden_states)
hidden_states = self.adaln(hidden_states, condition)
q = k = v = hidden_states # (L*N, D)
w_q, w_k, w_v = self.temporal_attn.in_proj_weight.chunk(3)
b_q, b_k, b_v = self.temporal_attn.in_proj_bias.chunk(3)
q = F.linear(q, w_q, b_q)
k = F.linear(k, w_k, b_k)
v = F.linear(v, w_v, b_v)
num_heads, head_dim = self.temporal_attn.num_heads, self.temporal_attn.head_dim
q = q.view(q.shape[0], num_heads, head_dim)
k = k.view(k.shape[0], num_heads, head_dim)
v = v.view(v.shape[0], num_heads, head_dim)
cu_len = torch.cumsum(torch.tensor(split_sizes, dtype=torch.int, device=hidden_states.device), dim=0)
cu_lens = [cu_len + i * N for i in range(L)]
cu_lens = torch.cat([torch.zeros((1, ), device=hidden_states.device)] + cu_lens).to(torch.int)
max_len = max(split_sizes)
out = flash_attn_varlen_func(
q=q, k=k, v=v,
cu_seqlens_q=cu_lens,
cu_seqlens_k=cu_lens,
max_seqlen_q=max_len,
max_seqlen_k=max_len,
causal=self.config.temporal_causal,
)
out = out.view(q.shape[0], num_heads*head_dim)
out = self.temporal_attn.out_proj(out) # (L*N, D)
out = out.view(L, N, D).transpose(0, 1).contiguous() # (L*N, D) -> (L, N, D) -> (N, L, D)
# add to residual
hidden_states = residual + out * self.alpha_xattn
return hidden_states
class InternVisionTemporalEncoderLayer(nn.Module):
def __init__(self, config: InternVisionConfig, drop_path_rate: float, layer_idx: int=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.embed_dim = config.hidden_size
self.intermediate_size = config.intermediate_size
self.norm_type = config.norm_type
self.attn = InternAttention(config)
self.mlp = InternMLP(config)
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def initialize_temporal_module(self):
temporal_layer_ids = self.config.temporal_layer_ids
if (temporal_layer_ids is not None) and self.layer_idx not in temporal_layer_ids:
self.temporal_module = None
return
self.temporal_module = TokenTemporalAttention(self.config)
self.temporal_module_place = self.config.temporal_module_place
param_names = [k for k, v in self.temporal_module.named_parameters()]
print(f"[vision temporal model] layer {self.layer_idx} initialize temporal module. "
f"Place: {self.temporal_module_place}. Parameters: {param_names}")
def forward(
self,
hidden_states: torch.Tensor,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
"""
Args:
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
"""
if (self.temporal_module is not None) and ('before_self_attn' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='before_self_attn')
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
# default: pass temporal module (between self-attn and MLP)
if (self.temporal_module is not None) and ('after_self_attn' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_self_attn')
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
if (self.temporal_module is not None) and ('after_mlp' in self.temporal_module_place):
hidden_states = self.temporal_module(hidden_states, split_sizes, temporal_id=temporal_id, place='after_mlp')
return hidden_states
class InternVisionTemporalEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`InternEncoderLayer`].
Args:
config (`InternConfig`):
The corresponding vision configuration for the `InternEncoder`.
"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layers = nn.ModuleList([
InternVisionTemporalEncoderLayer(config, dpr[idx], layer_idx=idx)
for idx in range(config.num_hidden_layers)
])
self.gradient_checkpointing = True
def forward(
self,
inputs_embeds,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
encoder_layer,
hidden_states,
split_sizes,
temporal_id)
else:
layer_outputs = encoder_layer(
hidden_states,
split_sizes=split_sizes,
temporal_id=temporal_id,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states
)
class InternVisionTemporalModel(PreTrainedModel):
main_input_name = 'pixel_values'
_supports_flash_attn_2 = True
config_class = InternVisionConfig
_no_split_modules = ['InternVisionTemporalEncoderLayer']
def __init__(self, config: InternVisionConfig, delay_init_new_param=False):
super().__init__(config)
self.config = config
self.embeddings = InternVisionEmbeddings(config)
self.encoder = InternVisionTemporalEncoder(config)
self.new_param_inited = False
if delay_init_new_param:
print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}, temporal module should be initalized later")
else:
print(f"[vision temporal model] delay_init_new_param={delay_init_new_param}")
self.initialize_temporal_module()
def initialize_temporal_module(self):
if self.new_param_inited:
print("[vision temporal model] Warning!!! temporal modules have been initialized, skip.")
return
print("[vision temporal model] Initializing temporal modules...")
for layer in self.encoder.layers:
layer.initialize_temporal_module()
self.new_param_inited = True
def resize_pos_embeddings(self, old_size, new_size, patch_size):
pos_emb = self.embeddings.position_embedding
_, num_positions, embed_dim = pos_emb.shape
cls_emb = pos_emb[:, :1, :]
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
self.embeddings.position_embedding = nn.Parameter(pos_emb)
self.embeddings.image_size = new_size
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
split_sizes: Optional[list] = None,
temporal_id: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and pixel_embeds is None:
raise ValueError('You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
else:
if len(pixel_values.shape) == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
split_sizes=split_sizes,
temporal_id=temporal_id,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|