metadata
base_model: aubmindlab/bert-base-arabertv02
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1000000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: فتى يرتدي اللون الأحمر ينزلق على متن عربة نفخة
sentences:
- اثنان من الشباب الآسيويين يتسكعون
- فتى يلعب على عربة نفخة
- فتى يثقب سكيناً في عربة نفخة
- source_sentence: عامل بناء يقف على رافعة يضع ذراعًا كبيرًا على قمة قمة قيد الإنشاء.
sentences:
- الاطفال يركبون عربة متعة
- شخص يقف
- لا أحد يقف
- source_sentence: رجل مع حفرة طاقة كبيرة يقف بجانب ابنته مع خرطوم المكنسة الكهربائية.
sentences:
- جنديان يحملان أسلحة
- رجل يحمل مثقاب يقف بجانب فتاة تحمل خرطوم كهربائي
- الرجل والفتاة يرسمون الجدران
- source_sentence: رجل يرتدي قميص أسود يعزف على الجيتار.
sentences:
- الرجل يرتدي الأسود.
- هناك رجل يفرغ
- الرجل يرتدي قميصاً أزرق.
- source_sentence: رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا
sentences:
- رجل يلعب بالكاميرا
- فتى يقفز في الهواء
- الرجل يقف ويأخذ الصور
model-index:
- name: SentenceTransformer based on aubmindlab/bert-base-arabertv02
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8137491067613172
name: Pearson Cosine
- type: spearman_cosine
value: 0.8139804248887779
name: Spearman Cosine
- type: pearson_manhattan
value: 0.805239691712325
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8071457719582591
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8053105962459932
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8078084689219578
name: Spearman Euclidean
- type: pearson_dot
value: 0.8019135317246738
name: Pearson Dot
- type: spearman_dot
value: 0.7961388104098682
name: Spearman Dot
- type: pearson_max
value: 0.8137491067613172
name: Pearson Max
- type: spearman_max
value: 0.8139804248887779
name: Spearman Max
- type: pearson_cosine
value: 0.8137491067613172
name: Pearson Cosine
- type: spearman_cosine
value: 0.8139804248887779
name: Spearman Cosine
- type: pearson_manhattan
value: 0.805239691712325
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8071457719582591
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8053105962459932
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8078084689219578
name: Spearman Euclidean
- type: pearson_dot
value: 0.8019135317246738
name: Pearson Dot
- type: spearman_dot
value: 0.7961388104098682
name: Spearman Dot
- type: pearson_max
value: 0.8137491067613172
name: Pearson Max
- type: spearman_max
value: 0.8139804248887779
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8127890716639393
name: Pearson Cosine
- type: spearman_cosine
value: 0.813769735512917
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8045619532064516
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.806084784718251
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8047817340341926
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8067787363048019
name: Spearman Euclidean
- type: pearson_dot
value: 0.7985706834990611
name: Pearson Dot
- type: spearman_dot
value: 0.7926669266198092
name: Spearman Dot
- type: pearson_max
value: 0.8127890716639393
name: Pearson Max
- type: spearman_max
value: 0.813769735512917
name: Spearman Max
- type: pearson_cosine
value: 0.8127890716639393
name: Pearson Cosine
- type: spearman_cosine
value: 0.813769735512917
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8045619532064516
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.806084784718251
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8047817340341926
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8067787363048019
name: Spearman Euclidean
- type: pearson_dot
value: 0.7985706834990611
name: Pearson Dot
- type: spearman_dot
value: 0.7926669266198092
name: Spearman Dot
- type: pearson_max
value: 0.8127890716639393
name: Pearson Max
- type: spearman_max
value: 0.813769735512917
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.810388221021721
name: Pearson Cosine
- type: spearman_cosine
value: 0.8138356923403065
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8015100804443567
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8026219149891689
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8016089017435591
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8030480833628191
name: Spearman Euclidean
- type: pearson_dot
value: 0.792265476718613
name: Pearson Dot
- type: spearman_dot
value: 0.787067391010805
name: Spearman Dot
- type: pearson_max
value: 0.810388221021721
name: Pearson Max
- type: spearman_max
value: 0.8138356923403065
name: Spearman Max
- type: pearson_cosine
value: 0.810388221021721
name: Pearson Cosine
- type: spearman_cosine
value: 0.8138356923403065
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8015100804443567
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8026219149891689
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8016089017435591
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8030480833628191
name: Spearman Euclidean
- type: pearson_dot
value: 0.792265476718613
name: Pearson Dot
- type: spearman_dot
value: 0.787067391010805
name: Spearman Dot
- type: pearson_max
value: 0.810388221021721
name: Pearson Max
- type: spearman_max
value: 0.8138356923403065
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8071777671061434
name: Pearson Cosine
- type: spearman_cosine
value: 0.8128987608664245
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7969339482985063
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7972524285093451
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7971979787664204
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.797866628579141
name: Spearman Euclidean
- type: pearson_dot
value: 0.7752745908442699
name: Pearson Dot
- type: spearman_dot
value: 0.7685950685903284
name: Spearman Dot
- type: pearson_max
value: 0.8071777671061434
name: Pearson Max
- type: spearman_max
value: 0.8128987608664245
name: Spearman Max
- type: pearson_cosine
value: 0.8071777671061434
name: Pearson Cosine
- type: spearman_cosine
value: 0.8128987608664245
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7969339482985063
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7972524285093451
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7971979787664204
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.797866628579141
name: Spearman Euclidean
- type: pearson_dot
value: 0.7752745908442699
name: Pearson Dot
- type: spearman_dot
value: 0.7685950685903284
name: Spearman Dot
- type: pearson_max
value: 0.8071777671061434
name: Pearson Max
- type: spearman_max
value: 0.8128987608664245
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7992861493805723
name: Pearson Cosine
- type: spearman_cosine
value: 0.809205854296297
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7841737408240652
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7848704254075567
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7865782078684138
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7874610680426495
name: Spearman Euclidean
- type: pearson_dot
value: 0.7341564461014968
name: Pearson Dot
- type: spearman_dot
value: 0.7244607540987561
name: Spearman Dot
- type: pearson_max
value: 0.7992861493805723
name: Pearson Max
- type: spearman_max
value: 0.809205854296297
name: Spearman Max
- type: pearson_cosine
value: 0.7992861493805723
name: Pearson Cosine
- type: spearman_cosine
value: 0.809205854296297
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7841737408240652
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7848704254075567
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7865782078684138
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7874610680426495
name: Spearman Euclidean
- type: pearson_dot
value: 0.7341564461014968
name: Pearson Dot
- type: spearman_dot
value: 0.7244607540987561
name: Spearman Dot
- type: pearson_max
value: 0.7992861493805723
name: Pearson Max
- type: spearman_max
value: 0.809205854296297
name: Spearman Max
SentenceTransformer based on aubmindlab/bert-base-arabertv02
This is a sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabert-matro-v4")
sentences = [
'رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا',
'رجل يلعب بالكاميرا',
'الرجل يقف ويأخذ الصور',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8137 |
spearman_cosine |
0.814 |
pearson_manhattan |
0.8052 |
spearman_manhattan |
0.8071 |
pearson_euclidean |
0.8053 |
spearman_euclidean |
0.8078 |
pearson_dot |
0.8019 |
spearman_dot |
0.7961 |
pearson_max |
0.8137 |
spearman_max |
0.814 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8128 |
spearman_cosine |
0.8138 |
pearson_manhattan |
0.8046 |
spearman_manhattan |
0.8061 |
pearson_euclidean |
0.8048 |
spearman_euclidean |
0.8068 |
pearson_dot |
0.7986 |
spearman_dot |
0.7927 |
pearson_max |
0.8128 |
spearman_max |
0.8138 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8104 |
spearman_cosine |
0.8138 |
pearson_manhattan |
0.8015 |
spearman_manhattan |
0.8026 |
pearson_euclidean |
0.8016 |
spearman_euclidean |
0.803 |
pearson_dot |
0.7923 |
spearman_dot |
0.7871 |
pearson_max |
0.8104 |
spearman_max |
0.8138 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8072 |
spearman_cosine |
0.8129 |
pearson_manhattan |
0.7969 |
spearman_manhattan |
0.7973 |
pearson_euclidean |
0.7972 |
spearman_euclidean |
0.7979 |
pearson_dot |
0.7753 |
spearman_dot |
0.7686 |
pearson_max |
0.8072 |
spearman_max |
0.8129 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7993 |
spearman_cosine |
0.8092 |
pearson_manhattan |
0.7842 |
spearman_manhattan |
0.7849 |
pearson_euclidean |
0.7866 |
spearman_euclidean |
0.7875 |
pearson_dot |
0.7342 |
spearman_dot |
0.7245 |
pearson_max |
0.7993 |
spearman_max |
0.8092 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8137 |
spearman_cosine |
0.814 |
pearson_manhattan |
0.8052 |
spearman_manhattan |
0.8071 |
pearson_euclidean |
0.8053 |
spearman_euclidean |
0.8078 |
pearson_dot |
0.8019 |
spearman_dot |
0.7961 |
pearson_max |
0.8137 |
spearman_max |
0.814 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8128 |
spearman_cosine |
0.8138 |
pearson_manhattan |
0.8046 |
spearman_manhattan |
0.8061 |
pearson_euclidean |
0.8048 |
spearman_euclidean |
0.8068 |
pearson_dot |
0.7986 |
spearman_dot |
0.7927 |
pearson_max |
0.8128 |
spearman_max |
0.8138 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8104 |
spearman_cosine |
0.8138 |
pearson_manhattan |
0.8015 |
spearman_manhattan |
0.8026 |
pearson_euclidean |
0.8016 |
spearman_euclidean |
0.803 |
pearson_dot |
0.7923 |
spearman_dot |
0.7871 |
pearson_max |
0.8104 |
spearman_max |
0.8138 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8072 |
spearman_cosine |
0.8129 |
pearson_manhattan |
0.7969 |
spearman_manhattan |
0.7973 |
pearson_euclidean |
0.7972 |
spearman_euclidean |
0.7979 |
pearson_dot |
0.7753 |
spearman_dot |
0.7686 |
pearson_max |
0.8072 |
spearman_max |
0.8129 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7993 |
spearman_cosine |
0.8092 |
pearson_manhattan |
0.7842 |
spearman_manhattan |
0.7849 |
pearson_euclidean |
0.7866 |
spearman_euclidean |
0.7875 |
pearson_dot |
0.7342 |
spearman_dot |
0.7245 |
pearson_max |
0.7993 |
spearman_max |
0.8092 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,000,000 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 4 tokens
- mean: 12.0 tokens
- max: 69 tokens
|
- min: 4 tokens
- mean: 31.78 tokens
- max: 174 tokens
|
- min: 4 tokens
- mean: 30.79 tokens
- max: 216 tokens
|
- Samples:
anchor |
positive |
negative |
ما الذي تتجنبه؟ |
ما الذي تحاولين تجنبه دائماً؟ |
أنا في حالة اكتئاب ماذا يجب أن أفعل؟ |
رجل يقف عند لافتة صفراء |
رجل يقترب من علامة |
رجل بجانب لافتة زرقاء |
لماذا قام (مودي) بحظر أوراق نقدية بقيمة 500 و 1000 روبية؟ |
لماذا قام مودي بإلغاء عملة الـ 500 و 1000 روبية؟ وما سبب إدخال عملة الـ 2000 روبية فجأة؟ |
ما هو أفضل خيار بعد الانتهاء من البكالوريوس في الهندسة الميكانيكية؟ |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 4 tokens
- mean: 14.87 tokens
- max: 70 tokens
|
- min: 4 tokens
- mean: 7.54 tokens
- max: 26 tokens
|
- min: 4 tokens
- mean: 8.14 tokens
- max: 23 tokens
|
- Samples:
anchor |
positive |
negative |
امرأتان يتعانقان بينما يحملان حزمة |
إمرأتان يحملان حزمة |
الرجال يتشاجرون خارج مطعم |
طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة. |
طفلين يرتديان قميصاً مرقماً يغسلون أيديهم |
طفلين يرتديان سترة يذهبان إلى المدرسة |
رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس |
رجل يبيع الدونات لعميل |
امرأة تشرب قهوتها في مقهى صغير |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: no
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.0384 |
200 |
9.7813 |
- |
- |
- |
- |
- |
0.0768 |
400 |
4.4771 |
- |
- |
- |
- |
- |
0.1152 |
600 |
3.754 |
- |
- |
- |
- |
- |
0.1536 |
800 |
3.4086 |
- |
- |
- |
- |
- |
0.1920 |
1000 |
3.1323 |
- |
- |
- |
- |
- |
0.2304 |
1200 |
2.9257 |
- |
- |
- |
- |
- |
0.2688 |
1400 |
2.8363 |
- |
- |
- |
- |
- |
0.3072 |
1600 |
2.6156 |
- |
- |
- |
- |
- |
0.3456 |
1800 |
2.5428 |
- |
- |
- |
- |
- |
0.3840 |
2000 |
2.4927 |
- |
- |
- |
- |
- |
0.4223 |
2200 |
2.4 |
- |
- |
- |
- |
- |
0.4607 |
2400 |
2.3193 |
- |
- |
- |
- |
- |
0.4991 |
2600 |
2.2363 |
- |
- |
- |
- |
- |
0.5375 |
2800 |
2.1929 |
- |
- |
- |
- |
- |
0.5759 |
3000 |
2.1396 |
- |
- |
- |
- |
- |
0.6143 |
3200 |
2.0481 |
- |
- |
- |
- |
- |
0.6527 |
3400 |
2.0299 |
- |
- |
- |
- |
- |
0.6911 |
3600 |
1.9895 |
- |
- |
- |
- |
- |
0.7295 |
3800 |
1.9889 |
- |
- |
- |
- |
- |
0.7679 |
4000 |
1.9319 |
- |
- |
- |
- |
- |
0.8063 |
4200 |
1.8865 |
- |
- |
- |
- |
- |
0.8447 |
4400 |
1.8349 |
- |
- |
- |
- |
- |
0.8831 |
4600 |
1.8047 |
- |
- |
- |
- |
- |
0.9215 |
4800 |
1.8009 |
- |
- |
- |
- |
- |
0.9599 |
5000 |
1.7962 |
- |
- |
- |
- |
- |
0.9983 |
5200 |
1.7231 |
- |
- |
- |
- |
- |
1.0367 |
5400 |
0.0288 |
- |
- |
- |
- |
- |
1.0751 |
5600 |
0.0 |
- |
- |
- |
- |
- |
1.1135 |
5800 |
0.0 |
- |
- |
- |
- |
- |
1.1519 |
6000 |
0.0 |
- |
- |
- |
- |
- |
1.1902 |
6200 |
0.0 |
- |
- |
- |
- |
- |
1.0056 |
6400 |
0.2935 |
- |
- |
- |
- |
- |
1.0440 |
6600 |
1.7571 |
- |
- |
- |
- |
- |
1.0824 |
6800 |
1.6487 |
- |
- |
- |
- |
- |
1.1208 |
7000 |
1.6513 |
- |
- |
- |
- |
- |
1.1591 |
7200 |
1.5466 |
- |
- |
- |
- |
- |
1.1975 |
7400 |
1.4583 |
- |
- |
- |
- |
- |
1.2359 |
7600 |
1.3805 |
- |
- |
- |
- |
- |
1.2743 |
7800 |
1.3264 |
- |
- |
- |
- |
- |
1.3127 |
8000 |
1.1898 |
- |
- |
- |
- |
- |
1.3511 |
8200 |
1.1961 |
- |
- |
- |
- |
- |
1.3895 |
8400 |
1.1749 |
- |
- |
- |
- |
- |
1.4279 |
8600 |
1.1438 |
- |
- |
- |
- |
- |
1.4663 |
8800 |
1.1481 |
- |
- |
- |
- |
- |
1.5047 |
9000 |
1.089 |
- |
- |
- |
- |
- |
1.5431 |
9200 |
1.1063 |
- |
- |
- |
- |
- |
1.5815 |
9400 |
1.0759 |
- |
- |
- |
- |
- |
1.6199 |
9600 |
1.0215 |
- |
- |
- |
- |
- |
1.6583 |
9800 |
1.0244 |
- |
- |
- |
- |
- |
1.6967 |
10000 |
1.0546 |
- |
- |
- |
- |
- |
1.7351 |
10200 |
1.0355 |
- |
- |
- |
- |
- |
1.7735 |
10400 |
1.0078 |
- |
- |
- |
- |
- |
1.8119 |
10600 |
1.0102 |
- |
- |
- |
- |
- |
1.8503 |
10800 |
0.9899 |
- |
- |
- |
- |
- |
1.8887 |
11000 |
0.971 |
- |
- |
- |
- |
- |
1.9270 |
11200 |
0.9676 |
- |
- |
- |
- |
- |
1.9654 |
11400 |
0.9707 |
- |
- |
- |
- |
- |
2.0038 |
11600 |
0.8222 |
- |
- |
- |
- |
- |
2.0422 |
11800 |
0.0 |
- |
- |
- |
- |
- |
2.0806 |
12000 |
0.0 |
- |
- |
- |
- |
- |
2.1190 |
12200 |
0.0 |
- |
- |
- |
- |
- |
2.1574 |
12400 |
0.0 |
- |
- |
- |
- |
- |
2.1958 |
12600 |
0.0 |
- |
- |
- |
- |
- |
2.0111 |
12800 |
0.2783 |
- |
- |
- |
- |
- |
2.0495 |
13000 |
0.8261 |
- |
- |
- |
- |
- |
2.0879 |
13200 |
0.868 |
- |
- |
- |
- |
- |
2.1263 |
13400 |
0.8653 |
- |
- |
- |
- |
- |
2.1647 |
13600 |
0.8647 |
- |
- |
- |
- |
- |
2.2031 |
13800 |
0.8085 |
- |
- |
- |
- |
- |
2.2415 |
14000 |
0.8122 |
- |
- |
- |
- |
- |
2.2799 |
14200 |
0.7647 |
- |
- |
- |
- |
- |
2.3183 |
14400 |
0.6959 |
- |
- |
- |
- |
- |
2.3567 |
14600 |
0.7228 |
- |
- |
- |
- |
- |
2.3951 |
14800 |
0.7303 |
- |
- |
- |
- |
- |
2.4335 |
15000 |
0.7056 |
- |
- |
- |
- |
- |
2.4719 |
15200 |
0.737 |
- |
- |
- |
- |
- |
2.5103 |
15400 |
0.7016 |
- |
- |
- |
- |
- |
2.5487 |
15600 |
0.7183 |
- |
- |
- |
- |
- |
2.5538 |
15627 |
- |
0.8129 |
0.8138 |
0.8138 |
0.8092 |
0.8140 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.43.1
- PyTorch: 2.2.2
- Accelerate: 0.33.0
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}