Omartificial-Intelligence-Space commited on
Commit
b581354
·
verified ·
1 Parent(s): fb55061

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1023 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: aubmindlab/bert-base-arabertv02
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:1000000
24
+ - loss:MatryoshkaLoss
25
+ - loss:MultipleNegativesRankingLoss
26
+ widget:
27
+ - source_sentence: فتى يرتدي اللون الأحمر ينزلق على متن عربة نفخة
28
+ sentences:
29
+ - اثنان من الشباب الآسيويين يتسكعون
30
+ - فتى يلعب على عربة نفخة
31
+ - فتى يثقب سكيناً في عربة نفخة
32
+ - source_sentence: عامل بناء يقف على رافعة يضع ذراعًا كبيرًا على قمة قمة قيد الإنشاء.
33
+ sentences:
34
+ - الاطفال يركبون عربة متعة
35
+ - شخص يقف
36
+ - لا أحد يقف
37
+ - source_sentence: رجل مع حفرة طاقة كبيرة يقف بجانب ابنته مع خرطوم المكنسة الكهربائية.
38
+ sentences:
39
+ - جنديان يحملان أسلحة
40
+ - رجل يحمل مثقاب يقف بجانب فتاة تحمل خرطوم كهربائي
41
+ - الرجل والفتاة يرسمون الجدران
42
+ - source_sentence: رجل يرتدي قميص أسود يعزف على الجيتار.
43
+ sentences:
44
+ - الرجل يرتدي الأسود.
45
+ - هناك رجل يفرغ
46
+ - الرجل يرتدي قميصاً أزرق.
47
+ - source_sentence: رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا
48
+ sentences:
49
+ - رجل يلعب بالكاميرا
50
+ - فتى يقفز في الهواء
51
+ - الرجل يقف ويأخذ الصور
52
+ model-index:
53
+ - name: SentenceTransformer based on aubmindlab/bert-base-arabertv02
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts test 768
60
+ type: sts-test-768
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.8137491067613172
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.8139804248887779
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.805239691712325
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.8071457719582591
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.8053105962459932
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.8078084689219578
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.8019135317246738
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.7961388104098682
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.8137491067613172
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.8139804248887779
91
+ name: Spearman Max
92
+ - type: pearson_cosine
93
+ value: 0.8137491067613172
94
+ name: Pearson Cosine
95
+ - type: spearman_cosine
96
+ value: 0.8139804248887779
97
+ name: Spearman Cosine
98
+ - type: pearson_manhattan
99
+ value: 0.805239691712325
100
+ name: Pearson Manhattan
101
+ - type: spearman_manhattan
102
+ value: 0.8071457719582591
103
+ name: Spearman Manhattan
104
+ - type: pearson_euclidean
105
+ value: 0.8053105962459932
106
+ name: Pearson Euclidean
107
+ - type: spearman_euclidean
108
+ value: 0.8078084689219578
109
+ name: Spearman Euclidean
110
+ - type: pearson_dot
111
+ value: 0.8019135317246738
112
+ name: Pearson Dot
113
+ - type: spearman_dot
114
+ value: 0.7961388104098682
115
+ name: Spearman Dot
116
+ - type: pearson_max
117
+ value: 0.8137491067613172
118
+ name: Pearson Max
119
+ - type: spearman_max
120
+ value: 0.8139804248887779
121
+ name: Spearman Max
122
+ - task:
123
+ type: semantic-similarity
124
+ name: Semantic Similarity
125
+ dataset:
126
+ name: sts test 512
127
+ type: sts-test-512
128
+ metrics:
129
+ - type: pearson_cosine
130
+ value: 0.8127890716639393
131
+ name: Pearson Cosine
132
+ - type: spearman_cosine
133
+ value: 0.813769735512917
134
+ name: Spearman Cosine
135
+ - type: pearson_manhattan
136
+ value: 0.8045619532064516
137
+ name: Pearson Manhattan
138
+ - type: spearman_manhattan
139
+ value: 0.806084784718251
140
+ name: Spearman Manhattan
141
+ - type: pearson_euclidean
142
+ value: 0.8047817340341926
143
+ name: Pearson Euclidean
144
+ - type: spearman_euclidean
145
+ value: 0.8067787363048019
146
+ name: Spearman Euclidean
147
+ - type: pearson_dot
148
+ value: 0.7985706834990611
149
+ name: Pearson Dot
150
+ - type: spearman_dot
151
+ value: 0.7926669266198092
152
+ name: Spearman Dot
153
+ - type: pearson_max
154
+ value: 0.8127890716639393
155
+ name: Pearson Max
156
+ - type: spearman_max
157
+ value: 0.813769735512917
158
+ name: Spearman Max
159
+ - type: pearson_cosine
160
+ value: 0.8127890716639393
161
+ name: Pearson Cosine
162
+ - type: spearman_cosine
163
+ value: 0.813769735512917
164
+ name: Spearman Cosine
165
+ - type: pearson_manhattan
166
+ value: 0.8045619532064516
167
+ name: Pearson Manhattan
168
+ - type: spearman_manhattan
169
+ value: 0.806084784718251
170
+ name: Spearman Manhattan
171
+ - type: pearson_euclidean
172
+ value: 0.8047817340341926
173
+ name: Pearson Euclidean
174
+ - type: spearman_euclidean
175
+ value: 0.8067787363048019
176
+ name: Spearman Euclidean
177
+ - type: pearson_dot
178
+ value: 0.7985706834990611
179
+ name: Pearson Dot
180
+ - type: spearman_dot
181
+ value: 0.7926669266198092
182
+ name: Spearman Dot
183
+ - type: pearson_max
184
+ value: 0.8127890716639393
185
+ name: Pearson Max
186
+ - type: spearman_max
187
+ value: 0.813769735512917
188
+ name: Spearman Max
189
+ - task:
190
+ type: semantic-similarity
191
+ name: Semantic Similarity
192
+ dataset:
193
+ name: sts test 256
194
+ type: sts-test-256
195
+ metrics:
196
+ - type: pearson_cosine
197
+ value: 0.810388221021721
198
+ name: Pearson Cosine
199
+ - type: spearman_cosine
200
+ value: 0.8138356923403065
201
+ name: Spearman Cosine
202
+ - type: pearson_manhattan
203
+ value: 0.8015100804443567
204
+ name: Pearson Manhattan
205
+ - type: spearman_manhattan
206
+ value: 0.8026219149891689
207
+ name: Spearman Manhattan
208
+ - type: pearson_euclidean
209
+ value: 0.8016089017435591
210
+ name: Pearson Euclidean
211
+ - type: spearman_euclidean
212
+ value: 0.8030480833628191
213
+ name: Spearman Euclidean
214
+ - type: pearson_dot
215
+ value: 0.792265476718613
216
+ name: Pearson Dot
217
+ - type: spearman_dot
218
+ value: 0.787067391010805
219
+ name: Spearman Dot
220
+ - type: pearson_max
221
+ value: 0.810388221021721
222
+ name: Pearson Max
223
+ - type: spearman_max
224
+ value: 0.8138356923403065
225
+ name: Spearman Max
226
+ - type: pearson_cosine
227
+ value: 0.810388221021721
228
+ name: Pearson Cosine
229
+ - type: spearman_cosine
230
+ value: 0.8138356923403065
231
+ name: Spearman Cosine
232
+ - type: pearson_manhattan
233
+ value: 0.8015100804443567
234
+ name: Pearson Manhattan
235
+ - type: spearman_manhattan
236
+ value: 0.8026219149891689
237
+ name: Spearman Manhattan
238
+ - type: pearson_euclidean
239
+ value: 0.8016089017435591
240
+ name: Pearson Euclidean
241
+ - type: spearman_euclidean
242
+ value: 0.8030480833628191
243
+ name: Spearman Euclidean
244
+ - type: pearson_dot
245
+ value: 0.792265476718613
246
+ name: Pearson Dot
247
+ - type: spearman_dot
248
+ value: 0.787067391010805
249
+ name: Spearman Dot
250
+ - type: pearson_max
251
+ value: 0.810388221021721
252
+ name: Pearson Max
253
+ - type: spearman_max
254
+ value: 0.8138356923403065
255
+ name: Spearman Max
256
+ - task:
257
+ type: semantic-similarity
258
+ name: Semantic Similarity
259
+ dataset:
260
+ name: sts test 128
261
+ type: sts-test-128
262
+ metrics:
263
+ - type: pearson_cosine
264
+ value: 0.8071777671061434
265
+ name: Pearson Cosine
266
+ - type: spearman_cosine
267
+ value: 0.8128987608664245
268
+ name: Spearman Cosine
269
+ - type: pearson_manhattan
270
+ value: 0.7969339482985063
271
+ name: Pearson Manhattan
272
+ - type: spearman_manhattan
273
+ value: 0.7972524285093451
274
+ name: Spearman Manhattan
275
+ - type: pearson_euclidean
276
+ value: 0.7971979787664204
277
+ name: Pearson Euclidean
278
+ - type: spearman_euclidean
279
+ value: 0.797866628579141
280
+ name: Spearman Euclidean
281
+ - type: pearson_dot
282
+ value: 0.7752745908442699
283
+ name: Pearson Dot
284
+ - type: spearman_dot
285
+ value: 0.7685950685903284
286
+ name: Spearman Dot
287
+ - type: pearson_max
288
+ value: 0.8071777671061434
289
+ name: Pearson Max
290
+ - type: spearman_max
291
+ value: 0.8128987608664245
292
+ name: Spearman Max
293
+ - type: pearson_cosine
294
+ value: 0.8071777671061434
295
+ name: Pearson Cosine
296
+ - type: spearman_cosine
297
+ value: 0.8128987608664245
298
+ name: Spearman Cosine
299
+ - type: pearson_manhattan
300
+ value: 0.7969339482985063
301
+ name: Pearson Manhattan
302
+ - type: spearman_manhattan
303
+ value: 0.7972524285093451
304
+ name: Spearman Manhattan
305
+ - type: pearson_euclidean
306
+ value: 0.7971979787664204
307
+ name: Pearson Euclidean
308
+ - type: spearman_euclidean
309
+ value: 0.797866628579141
310
+ name: Spearman Euclidean
311
+ - type: pearson_dot
312
+ value: 0.7752745908442699
313
+ name: Pearson Dot
314
+ - type: spearman_dot
315
+ value: 0.7685950685903284
316
+ name: Spearman Dot
317
+ - type: pearson_max
318
+ value: 0.8071777671061434
319
+ name: Pearson Max
320
+ - type: spearman_max
321
+ value: 0.8128987608664245
322
+ name: Spearman Max
323
+ - task:
324
+ type: semantic-similarity
325
+ name: Semantic Similarity
326
+ dataset:
327
+ name: sts test 64
328
+ type: sts-test-64
329
+ metrics:
330
+ - type: pearson_cosine
331
+ value: 0.7992861493805723
332
+ name: Pearson Cosine
333
+ - type: spearman_cosine
334
+ value: 0.809205854296297
335
+ name: Spearman Cosine
336
+ - type: pearson_manhattan
337
+ value: 0.7841737408240652
338
+ name: Pearson Manhattan
339
+ - type: spearman_manhattan
340
+ value: 0.7848704254075567
341
+ name: Spearman Manhattan
342
+ - type: pearson_euclidean
343
+ value: 0.7865782078684138
344
+ name: Pearson Euclidean
345
+ - type: spearman_euclidean
346
+ value: 0.7874610680426495
347
+ name: Spearman Euclidean
348
+ - type: pearson_dot
349
+ value: 0.7341564461014968
350
+ name: Pearson Dot
351
+ - type: spearman_dot
352
+ value: 0.7244607540987561
353
+ name: Spearman Dot
354
+ - type: pearson_max
355
+ value: 0.7992861493805723
356
+ name: Pearson Max
357
+ - type: spearman_max
358
+ value: 0.809205854296297
359
+ name: Spearman Max
360
+ - type: pearson_cosine
361
+ value: 0.7992861493805723
362
+ name: Pearson Cosine
363
+ - type: spearman_cosine
364
+ value: 0.809205854296297
365
+ name: Spearman Cosine
366
+ - type: pearson_manhattan
367
+ value: 0.7841737408240652
368
+ name: Pearson Manhattan
369
+ - type: spearman_manhattan
370
+ value: 0.7848704254075567
371
+ name: Spearman Manhattan
372
+ - type: pearson_euclidean
373
+ value: 0.7865782078684138
374
+ name: Pearson Euclidean
375
+ - type: spearman_euclidean
376
+ value: 0.7874610680426495
377
+ name: Spearman Euclidean
378
+ - type: pearson_dot
379
+ value: 0.7341564461014968
380
+ name: Pearson Dot
381
+ - type: spearman_dot
382
+ value: 0.7244607540987561
383
+ name: Spearman Dot
384
+ - type: pearson_max
385
+ value: 0.7992861493805723
386
+ name: Pearson Max
387
+ - type: spearman_max
388
+ value: 0.809205854296297
389
+ name: Spearman Max
390
+ ---
391
+
392
+ # SentenceTransformer based on aubmindlab/bert-base-arabertv02
393
+
394
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
395
+
396
+ ## Model Details
397
+
398
+ ### Model Description
399
+ - **Model Type:** Sentence Transformer
400
+ - **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 -->
401
+ - **Maximum Sequence Length:** 512 tokens
402
+ - **Output Dimensionality:** 768 tokens
403
+ - **Similarity Function:** Cosine Similarity
404
+ <!-- - **Training Dataset:** Unknown -->
405
+ <!-- - **Language:** Unknown -->
406
+ <!-- - **License:** Unknown -->
407
+
408
+ ### Model Sources
409
+
410
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
411
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
412
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
413
+
414
+ ### Full Model Architecture
415
+
416
+ ```
417
+ SentenceTransformer(
418
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
419
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
420
+ )
421
+ ```
422
+
423
+ ## Usage
424
+
425
+ ### Direct Usage (Sentence Transformers)
426
+
427
+ First install the Sentence Transformers library:
428
+
429
+ ```bash
430
+ pip install -U sentence-transformers
431
+ ```
432
+
433
+ Then you can load this model and run inference.
434
+ ```python
435
+ from sentence_transformers import SentenceTransformer
436
+
437
+ # Download from the 🤗 Hub
438
+ model = SentenceTransformer("Omartificial-Intelligence-Space/Arabert-matro-v4")
439
+ # Run inference
440
+ sentences = [
441
+ 'رجل يرتدي قميص (فيجاس) الأحمر يجلس على طاولة ويلعب بالكاميرا',
442
+ 'رجل يلعب بالكاميرا',
443
+ 'الرجل يقف ويأخذ الصور',
444
+ ]
445
+ embeddings = model.encode(sentences)
446
+ print(embeddings.shape)
447
+ # [3, 768]
448
+
449
+ # Get the similarity scores for the embeddings
450
+ similarities = model.similarity(embeddings, embeddings)
451
+ print(similarities.shape)
452
+ # [3, 3]
453
+ ```
454
+
455
+ <!--
456
+ ### Direct Usage (Transformers)
457
+
458
+ <details><summary>Click to see the direct usage in Transformers</summary>
459
+
460
+ </details>
461
+ -->
462
+
463
+ <!--
464
+ ### Downstream Usage (Sentence Transformers)
465
+
466
+ You can finetune this model on your own dataset.
467
+
468
+ <details><summary>Click to expand</summary>
469
+
470
+ </details>
471
+ -->
472
+
473
+ <!--
474
+ ### Out-of-Scope Use
475
+
476
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
477
+ -->
478
+
479
+ ## Evaluation
480
+
481
+ ### Metrics
482
+
483
+ #### Semantic Similarity
484
+ * Dataset: `sts-test-768`
485
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
486
+
487
+ | Metric | Value |
488
+ |:--------------------|:----------|
489
+ | pearson_cosine | 0.8137 |
490
+ | **spearman_cosine** | **0.814** |
491
+ | pearson_manhattan | 0.8052 |
492
+ | spearman_manhattan | 0.8071 |
493
+ | pearson_euclidean | 0.8053 |
494
+ | spearman_euclidean | 0.8078 |
495
+ | pearson_dot | 0.8019 |
496
+ | spearman_dot | 0.7961 |
497
+ | pearson_max | 0.8137 |
498
+ | spearman_max | 0.814 |
499
+
500
+ #### Semantic Similarity
501
+ * Dataset: `sts-test-512`
502
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
503
+
504
+ | Metric | Value |
505
+ |:--------------------|:-----------|
506
+ | pearson_cosine | 0.8128 |
507
+ | **spearman_cosine** | **0.8138** |
508
+ | pearson_manhattan | 0.8046 |
509
+ | spearman_manhattan | 0.8061 |
510
+ | pearson_euclidean | 0.8048 |
511
+ | spearman_euclidean | 0.8068 |
512
+ | pearson_dot | 0.7986 |
513
+ | spearman_dot | 0.7927 |
514
+ | pearson_max | 0.8128 |
515
+ | spearman_max | 0.8138 |
516
+
517
+ #### Semantic Similarity
518
+ * Dataset: `sts-test-256`
519
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:--------------------|:-----------|
523
+ | pearson_cosine | 0.8104 |
524
+ | **spearman_cosine** | **0.8138** |
525
+ | pearson_manhattan | 0.8015 |
526
+ | spearman_manhattan | 0.8026 |
527
+ | pearson_euclidean | 0.8016 |
528
+ | spearman_euclidean | 0.803 |
529
+ | pearson_dot | 0.7923 |
530
+ | spearman_dot | 0.7871 |
531
+ | pearson_max | 0.8104 |
532
+ | spearman_max | 0.8138 |
533
+
534
+ #### Semantic Similarity
535
+ * Dataset: `sts-test-128`
536
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
537
+
538
+ | Metric | Value |
539
+ |:--------------------|:-----------|
540
+ | pearson_cosine | 0.8072 |
541
+ | **spearman_cosine** | **0.8129** |
542
+ | pearson_manhattan | 0.7969 |
543
+ | spearman_manhattan | 0.7973 |
544
+ | pearson_euclidean | 0.7972 |
545
+ | spearman_euclidean | 0.7979 |
546
+ | pearson_dot | 0.7753 |
547
+ | spearman_dot | 0.7686 |
548
+ | pearson_max | 0.8072 |
549
+ | spearman_max | 0.8129 |
550
+
551
+ #### Semantic Similarity
552
+ * Dataset: `sts-test-64`
553
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
554
+
555
+ | Metric | Value |
556
+ |:--------------------|:-----------|
557
+ | pearson_cosine | 0.7993 |
558
+ | **spearman_cosine** | **0.8092** |
559
+ | pearson_manhattan | 0.7842 |
560
+ | spearman_manhattan | 0.7849 |
561
+ | pearson_euclidean | 0.7866 |
562
+ | spearman_euclidean | 0.7875 |
563
+ | pearson_dot | 0.7342 |
564
+ | spearman_dot | 0.7245 |
565
+ | pearson_max | 0.7993 |
566
+ | spearman_max | 0.8092 |
567
+
568
+ #### Semantic Similarity
569
+ * Dataset: `sts-test-768`
570
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
571
+
572
+ | Metric | Value |
573
+ |:--------------------|:----------|
574
+ | pearson_cosine | 0.8137 |
575
+ | **spearman_cosine** | **0.814** |
576
+ | pearson_manhattan | 0.8052 |
577
+ | spearman_manhattan | 0.8071 |
578
+ | pearson_euclidean | 0.8053 |
579
+ | spearman_euclidean | 0.8078 |
580
+ | pearson_dot | 0.8019 |
581
+ | spearman_dot | 0.7961 |
582
+ | pearson_max | 0.8137 |
583
+ | spearman_max | 0.814 |
584
+
585
+ #### Semantic Similarity
586
+ * Dataset: `sts-test-512`
587
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
588
+
589
+ | Metric | Value |
590
+ |:--------------------|:-----------|
591
+ | pearson_cosine | 0.8128 |
592
+ | **spearman_cosine** | **0.8138** |
593
+ | pearson_manhattan | 0.8046 |
594
+ | spearman_manhattan | 0.8061 |
595
+ | pearson_euclidean | 0.8048 |
596
+ | spearman_euclidean | 0.8068 |
597
+ | pearson_dot | 0.7986 |
598
+ | spearman_dot | 0.7927 |
599
+ | pearson_max | 0.8128 |
600
+ | spearman_max | 0.8138 |
601
+
602
+ #### Semantic Similarity
603
+ * Dataset: `sts-test-256`
604
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
605
+
606
+ | Metric | Value |
607
+ |:--------------------|:-----------|
608
+ | pearson_cosine | 0.8104 |
609
+ | **spearman_cosine** | **0.8138** |
610
+ | pearson_manhattan | 0.8015 |
611
+ | spearman_manhattan | 0.8026 |
612
+ | pearson_euclidean | 0.8016 |
613
+ | spearman_euclidean | 0.803 |
614
+ | pearson_dot | 0.7923 |
615
+ | spearman_dot | 0.7871 |
616
+ | pearson_max | 0.8104 |
617
+ | spearman_max | 0.8138 |
618
+
619
+ #### Semantic Similarity
620
+ * Dataset: `sts-test-128`
621
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
622
+
623
+ | Metric | Value |
624
+ |:--------------------|:-----------|
625
+ | pearson_cosine | 0.8072 |
626
+ | **spearman_cosine** | **0.8129** |
627
+ | pearson_manhattan | 0.7969 |
628
+ | spearman_manhattan | 0.7973 |
629
+ | pearson_euclidean | 0.7972 |
630
+ | spearman_euclidean | 0.7979 |
631
+ | pearson_dot | 0.7753 |
632
+ | spearman_dot | 0.7686 |
633
+ | pearson_max | 0.8072 |
634
+ | spearman_max | 0.8129 |
635
+
636
+ #### Semantic Similarity
637
+ * Dataset: `sts-test-64`
638
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
639
+
640
+ | Metric | Value |
641
+ |:--------------------|:-----------|
642
+ | pearson_cosine | 0.7993 |
643
+ | **spearman_cosine** | **0.8092** |
644
+ | pearson_manhattan | 0.7842 |
645
+ | spearman_manhattan | 0.7849 |
646
+ | pearson_euclidean | 0.7866 |
647
+ | spearman_euclidean | 0.7875 |
648
+ | pearson_dot | 0.7342 |
649
+ | spearman_dot | 0.7245 |
650
+ | pearson_max | 0.7993 |
651
+ | spearman_max | 0.8092 |
652
+
653
+ <!--
654
+ ## Bias, Risks and Limitations
655
+
656
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
657
+ -->
658
+
659
+ <!--
660
+ ### Recommendations
661
+
662
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
663
+ -->
664
+
665
+ ## Training Details
666
+
667
+ ### Training Dataset
668
+
669
+ #### Unnamed Dataset
670
+
671
+
672
+ * Size: 1,000,000 training samples
673
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
674
+ * Approximate statistics based on the first 1000 samples:
675
+ | | anchor | positive | negative |
676
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
677
+ | type | string | string | string |
678
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.0 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.78 tokens</li><li>max: 174 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 30.79 tokens</li><li>max: 216 tokens</li></ul> |
679
+ * Samples:
680
+ | anchor | positive | negative |
681
+ |:-----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
682
+ | <code>ما الذي تتجنبه؟</code> | <code>ما الذي تحاولين تجنبه دائماً؟</code> | <code>أنا في حالة اكتئاب ماذا يجب أن أفعل؟</code> |
683
+ | <code>رجل يقف عند لافتة صفراء</code> | <code>رجل يقترب من علامة</code> | <code>رجل بجانب لافتة زرقاء</code> |
684
+ | <code>لماذا قام (مودي) بحظر أوراق نقدية بقيمة 500 و 1000 روبية؟</code> | <code>لماذا قام مودي بإلغاء عملة الـ 500 و 1000 روبية؟ وما سبب إدخال عملة الـ 2000 روبية فجأة؟</code> | <code>ما هو أفضل خيار بعد الانتهاء من البكالوريوس في الهندسة الميكانيكية؟</code> |
685
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
686
+ ```json
687
+ {
688
+ "loss": "MultipleNegativesRankingLoss",
689
+ "matryoshka_dims": [
690
+ 768,
691
+ 512,
692
+ 256,
693
+ 128,
694
+ 64
695
+ ],
696
+ "matryoshka_weights": [
697
+ 1,
698
+ 1,
699
+ 1,
700
+ 1,
701
+ 1
702
+ ],
703
+ "n_dims_per_step": -1
704
+ }
705
+ ```
706
+
707
+ ### Evaluation Dataset
708
+
709
+ #### Omartificial-Intelligence-Space/arabic-n_li-triplet
710
+
711
+ * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
712
+ * Size: 6,584 evaluation samples
713
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
714
+ * Approximate statistics based on the first 1000 samples:
715
+ | | anchor | positive | negative |
716
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
717
+ | type | string | string | string |
718
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.87 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.54 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.14 tokens</li><li>max: 23 tokens</li></ul> |
719
+ * Samples:
720
+ | anchor | positive | negative |
721
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
722
+ | <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> |
723
+ | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
724
+ | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> |
725
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
726
+ ```json
727
+ {
728
+ "loss": "MultipleNegativesRankingLoss",
729
+ "matryoshka_dims": [
730
+ 768,
731
+ 512,
732
+ 256,
733
+ 128,
734
+ 64
735
+ ],
736
+ "matryoshka_weights": [
737
+ 1,
738
+ 1,
739
+ 1,
740
+ 1,
741
+ 1
742
+ ],
743
+ "n_dims_per_step": -1
744
+ }
745
+ ```
746
+
747
+ ### Training Hyperparameters
748
+ #### Non-Default Hyperparameters
749
+
750
+ - `per_device_train_batch_size`: 64
751
+ - `per_device_eval_batch_size`: 64
752
+ - `warmup_ratio`: 0.1
753
+ - `fp16`: True
754
+ - `batch_sampler`: no_duplicates
755
+
756
+ #### All Hyperparameters
757
+ <details><summary>Click to expand</summary>
758
+
759
+ - `overwrite_output_dir`: False
760
+ - `do_predict`: False
761
+ - `eval_strategy`: no
762
+ - `prediction_loss_only`: True
763
+ - `per_device_train_batch_size`: 64
764
+ - `per_device_eval_batch_size`: 64
765
+ - `per_gpu_train_batch_size`: None
766
+ - `per_gpu_eval_batch_size`: None
767
+ - `gradient_accumulation_steps`: 1
768
+ - `eval_accumulation_steps`: None
769
+ - `torch_empty_cache_steps`: None
770
+ - `learning_rate`: 5e-05
771
+ - `weight_decay`: 0.0
772
+ - `adam_beta1`: 0.9
773
+ - `adam_beta2`: 0.999
774
+ - `adam_epsilon`: 1e-08
775
+ - `max_grad_norm`: 1.0
776
+ - `num_train_epochs`: 3
777
+ - `max_steps`: -1
778
+ - `lr_scheduler_type`: linear
779
+ - `lr_scheduler_kwargs`: {}
780
+ - `warmup_ratio`: 0.1
781
+ - `warmup_steps`: 0
782
+ - `log_level`: passive
783
+ - `log_level_replica`: warning
784
+ - `log_on_each_node`: True
785
+ - `logging_nan_inf_filter`: True
786
+ - `save_safetensors`: True
787
+ - `save_on_each_node`: False
788
+ - `save_only_model`: False
789
+ - `restore_callback_states_from_checkpoint`: False
790
+ - `no_cuda`: False
791
+ - `use_cpu`: False
792
+ - `use_mps_device`: False
793
+ - `seed`: 42
794
+ - `data_seed`: None
795
+ - `jit_mode_eval`: False
796
+ - `use_ipex`: False
797
+ - `bf16`: False
798
+ - `fp16`: True
799
+ - `fp16_opt_level`: O1
800
+ - `half_precision_backend`: auto
801
+ - `bf16_full_eval`: False
802
+ - `fp16_full_eval`: False
803
+ - `tf32`: None
804
+ - `local_rank`: 0
805
+ - `ddp_backend`: None
806
+ - `tpu_num_cores`: None
807
+ - `tpu_metrics_debug`: False
808
+ - `debug`: []
809
+ - `dataloader_drop_last`: False
810
+ - `dataloader_num_workers`: 0
811
+ - `dataloader_prefetch_factor`: None
812
+ - `past_index`: -1
813
+ - `disable_tqdm`: False
814
+ - `remove_unused_columns`: True
815
+ - `label_names`: None
816
+ - `load_best_model_at_end`: False
817
+ - `ignore_data_skip`: False
818
+ - `fsdp`: []
819
+ - `fsdp_min_num_params`: 0
820
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
821
+ - `fsdp_transformer_layer_cls_to_wrap`: None
822
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
823
+ - `deepspeed`: None
824
+ - `label_smoothing_factor`: 0.0
825
+ - `optim`: adamw_torch
826
+ - `optim_args`: None
827
+ - `adafactor`: False
828
+ - `group_by_length`: False
829
+ - `length_column_name`: length
830
+ - `ddp_find_unused_parameters`: None
831
+ - `ddp_bucket_cap_mb`: None
832
+ - `ddp_broadcast_buffers`: False
833
+ - `dataloader_pin_memory`: True
834
+ - `dataloader_persistent_workers`: False
835
+ - `skip_memory_metrics`: True
836
+ - `use_legacy_prediction_loop`: False
837
+ - `push_to_hub`: False
838
+ - `resume_from_checkpoint`: None
839
+ - `hub_model_id`: None
840
+ - `hub_strategy`: every_save
841
+ - `hub_private_repo`: False
842
+ - `hub_always_push`: False
843
+ - `gradient_checkpointing`: False
844
+ - `gradient_checkpointing_kwargs`: None
845
+ - `include_inputs_for_metrics`: False
846
+ - `eval_do_concat_batches`: True
847
+ - `fp16_backend`: auto
848
+ - `push_to_hub_model_id`: None
849
+ - `push_to_hub_organization`: None
850
+ - `mp_parameters`:
851
+ - `auto_find_batch_size`: False
852
+ - `full_determinism`: False
853
+ - `torchdynamo`: None
854
+ - `ray_scope`: last
855
+ - `ddp_timeout`: 1800
856
+ - `torch_compile`: False
857
+ - `torch_compile_backend`: None
858
+ - `torch_compile_mode`: None
859
+ - `dispatch_batches`: None
860
+ - `split_batches`: None
861
+ - `include_tokens_per_second`: False
862
+ - `include_num_input_tokens_seen`: False
863
+ - `neftune_noise_alpha`: None
864
+ - `optim_target_modules`: None
865
+ - `batch_eval_metrics`: False
866
+ - `eval_on_start`: False
867
+ - `eval_use_gather_object`: False
868
+ - `batch_sampler`: no_duplicates
869
+ - `multi_dataset_batch_sampler`: proportional
870
+
871
+ </details>
872
+
873
+ ### Training Logs
874
+ | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
875
+ |:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
876
+ | 0.0384 | 200 | 9.7813 | - | - | - | - | - |
877
+ | 0.0768 | 400 | 4.4771 | - | - | - | - | - |
878
+ | 0.1152 | 600 | 3.754 | - | - | - | - | - |
879
+ | 0.1536 | 800 | 3.4086 | - | - | - | - | - |
880
+ | 0.1920 | 1000 | 3.1323 | - | - | - | - | - |
881
+ | 0.2304 | 1200 | 2.9257 | - | - | - | - | - |
882
+ | 0.2688 | 1400 | 2.8363 | - | - | - | - | - |
883
+ | 0.3072 | 1600 | 2.6156 | - | - | - | - | - |
884
+ | 0.3456 | 1800 | 2.5428 | - | - | - | - | - |
885
+ | 0.3840 | 2000 | 2.4927 | - | - | - | - | - |
886
+ | 0.4223 | 2200 | 2.4 | - | - | - | - | - |
887
+ | 0.4607 | 2400 | 2.3193 | - | - | - | - | - |
888
+ | 0.4991 | 2600 | 2.2363 | - | - | - | - | - |
889
+ | 0.5375 | 2800 | 2.1929 | - | - | - | - | - |
890
+ | 0.5759 | 3000 | 2.1396 | - | - | - | - | - |
891
+ | 0.6143 | 3200 | 2.0481 | - | - | - | - | - |
892
+ | 0.6527 | 3400 | 2.0299 | - | - | - | - | - |
893
+ | 0.6911 | 3600 | 1.9895 | - | - | - | - | - |
894
+ | 0.7295 | 3800 | 1.9889 | - | - | - | - | - |
895
+ | 0.7679 | 4000 | 1.9319 | - | - | - | - | - |
896
+ | 0.8063 | 4200 | 1.8865 | - | - | - | - | - |
897
+ | 0.8447 | 4400 | 1.8349 | - | - | - | - | - |
898
+ | 0.8831 | 4600 | 1.8047 | - | - | - | - | - |
899
+ | 0.9215 | 4800 | 1.8009 | - | - | - | - | - |
900
+ | 0.9599 | 5000 | 1.7962 | - | - | - | - | - |
901
+ | 0.9983 | 5200 | 1.7231 | - | - | - | - | - |
902
+ | 1.0367 | 5400 | 0.0288 | - | - | - | - | - |
903
+ | 1.0751 | 5600 | 0.0 | - | - | - | - | - |
904
+ | 1.1135 | 5800 | 0.0 | - | - | - | - | - |
905
+ | 1.1519 | 6000 | 0.0 | - | - | - | - | - |
906
+ | 1.1902 | 6200 | 0.0 | - | - | - | - | - |
907
+ | 1.0056 | 6400 | 0.2935 | - | - | - | - | - |
908
+ | 1.0440 | 6600 | 1.7571 | - | - | - | - | - |
909
+ | 1.0824 | 6800 | 1.6487 | - | - | - | - | - |
910
+ | 1.1208 | 7000 | 1.6513 | - | - | - | - | - |
911
+ | 1.1591 | 7200 | 1.5466 | - | - | - | - | - |
912
+ | 1.1975 | 7400 | 1.4583 | - | - | - | - | - |
913
+ | 1.2359 | 7600 | 1.3805 | - | - | - | - | - |
914
+ | 1.2743 | 7800 | 1.3264 | - | - | - | - | - |
915
+ | 1.3127 | 8000 | 1.1898 | - | - | - | - | - |
916
+ | 1.3511 | 8200 | 1.1961 | - | - | - | - | - |
917
+ | 1.3895 | 8400 | 1.1749 | - | - | - | - | - |
918
+ | 1.4279 | 8600 | 1.1438 | - | - | - | - | - |
919
+ | 1.4663 | 8800 | 1.1481 | - | - | - | - | - |
920
+ | 1.5047 | 9000 | 1.089 | - | - | - | - | - |
921
+ | 1.5431 | 9200 | 1.1063 | - | - | - | - | - |
922
+ | 1.5815 | 9400 | 1.0759 | - | - | - | - | - |
923
+ | 1.6199 | 9600 | 1.0215 | - | - | - | - | - |
924
+ | 1.6583 | 9800 | 1.0244 | - | - | - | - | - |
925
+ | 1.6967 | 10000 | 1.0546 | - | - | - | - | - |
926
+ | 1.7351 | 10200 | 1.0355 | - | - | - | - | - |
927
+ | 1.7735 | 10400 | 1.0078 | - | - | - | - | - |
928
+ | 1.8119 | 10600 | 1.0102 | - | - | - | - | - |
929
+ | 1.8503 | 10800 | 0.9899 | - | - | - | - | - |
930
+ | 1.8887 | 11000 | 0.971 | - | - | - | - | - |
931
+ | 1.9270 | 11200 | 0.9676 | - | - | - | - | - |
932
+ | 1.9654 | 11400 | 0.9707 | - | - | - | - | - |
933
+ | 2.0038 | 11600 | 0.8222 | - | - | - | - | - |
934
+ | 2.0422 | 11800 | 0.0 | - | - | - | - | - |
935
+ | 2.0806 | 12000 | 0.0 | - | - | - | - | - |
936
+ | 2.1190 | 12200 | 0.0 | - | - | - | - | - |
937
+ | 2.1574 | 12400 | 0.0 | - | - | - | - | - |
938
+ | 2.1958 | 12600 | 0.0 | - | - | - | - | - |
939
+ | 2.0111 | 12800 | 0.2783 | - | - | - | - | - |
940
+ | 2.0495 | 13000 | 0.8261 | - | - | - | - | - |
941
+ | 2.0879 | 13200 | 0.868 | - | - | - | - | - |
942
+ | 2.1263 | 13400 | 0.8653 | - | - | - | - | - |
943
+ | 2.1647 | 13600 | 0.8647 | - | - | - | - | - |
944
+ | 2.2031 | 13800 | 0.8085 | - | - | - | - | - |
945
+ | 2.2415 | 14000 | 0.8122 | - | - | - | - | - |
946
+ | 2.2799 | 14200 | 0.7647 | - | - | - | - | - |
947
+ | 2.3183 | 14400 | 0.6959 | - | - | - | - | - |
948
+ | 2.3567 | 14600 | 0.7228 | - | - | - | - | - |
949
+ | 2.3951 | 14800 | 0.7303 | - | - | - | - | - |
950
+ | 2.4335 | 15000 | 0.7056 | - | - | - | - | - |
951
+ | 2.4719 | 15200 | 0.737 | - | - | - | - | - |
952
+ | 2.5103 | 15400 | 0.7016 | - | - | - | - | - |
953
+ | 2.5487 | 15600 | 0.7183 | - | - | - | - | - |
954
+ | 2.5538 | 15627 | - | 0.8129 | 0.8138 | 0.8138 | 0.8092 | 0.8140 |
955
+
956
+
957
+ ### Framework Versions
958
+ - Python: 3.10.12
959
+ - Sentence Transformers: 3.0.1
960
+ - Transformers: 4.43.1
961
+ - PyTorch: 2.2.2
962
+ - Accelerate: 0.33.0
963
+ - Datasets: 2.19.0
964
+ - Tokenizers: 0.19.1
965
+
966
+ ## Citation
967
+
968
+ ### BibTeX
969
+
970
+ #### Sentence Transformers
971
+ ```bibtex
972
+ @inproceedings{reimers-2019-sentence-bert,
973
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
974
+ author = "Reimers, Nils and Gurevych, Iryna",
975
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
976
+ month = "11",
977
+ year = "2019",
978
+ publisher = "Association for Computational Linguistics",
979
+ url = "https://arxiv.org/abs/1908.10084",
980
+ }
981
+ ```
982
+
983
+ #### MatryoshkaLoss
984
+ ```bibtex
985
+ @misc{kusupati2024matryoshka,
986
+ title={Matryoshka Representation Learning},
987
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
988
+ year={2024},
989
+ eprint={2205.13147},
990
+ archivePrefix={arXiv},
991
+ primaryClass={cs.LG}
992
+ }
993
+ ```
994
+
995
+ #### MultipleNegativesRankingLoss
996
+ ```bibtex
997
+ @misc{henderson2017efficient,
998
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
999
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1000
+ year={2017},
1001
+ eprint={1705.00652},
1002
+ archivePrefix={arXiv},
1003
+ primaryClass={cs.CL}
1004
+ }
1005
+ ```
1006
+
1007
+ <!--
1008
+ ## Glossary
1009
+
1010
+ *Clearly define terms in order to be accessible across audiences.*
1011
+ -->
1012
+
1013
+ <!--
1014
+ ## Model Card Authors
1015
+
1016
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1017
+ -->
1018
+
1019
+ <!--
1020
+ ## Model Card Contact
1021
+
1022
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1023
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.43.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 64000
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.43.1",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee761022a6b8fc559f75ccb1ebb143e695acdf7d2263e41b6ba1535c9c131798
3
+ size 540795752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[رابط]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": true,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[بريد]",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": true,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[مستخدم]",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": true,
65
+ "special": true
66
+ }
67
+ },
68
+ "clean_up_tokenization_spaces": true,
69
+ "cls_token": "[CLS]",
70
+ "do_basic_tokenize": true,
71
+ "do_lower_case": false,
72
+ "mask_token": "[MASK]",
73
+ "max_len": 512,
74
+ "model_max_length": 512,
75
+ "never_split": [
76
+ "[بريد]",
77
+ "[مستخدم]",
78
+ "[رابط]"
79
+ ],
80
+ "pad_token": "[PAD]",
81
+ "sep_token": "[SEP]",
82
+ "strip_accents": null,
83
+ "tokenize_chinese_chars": true,
84
+ "tokenizer_class": "BertTokenizer",
85
+ "unk_token": "[UNK]"
86
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff