Omarrran's picture
Update README.md
938a617 verified
metadata
license: mit
language:
  - en
new_version: Omarrran/quantized_english_speecht5_finetune-tts
pipeline_tag: text-to-speech
tags:
  - quantized
library_name: transformers
datasets:
  - erenfazlioglu/turkishvoicedataset

QUANTIZED MODEL

Note:

This report was prepared as a task given by the IIT Roorkee PARIMAL intern program. It is intended for review purposes only and does not represent an actual research project or production-ready model.

CHECK REDUCED FILES AND SIZE

https://huggingface.co/Omarrran/quantized_english_speecht5_finetune-tts/tree/main

NOTE : This a Quntized Model of "Omarrran/english_speecht5_finetuned".

This log is the output from Quntized "Omarrran/quantized_english_speecht5_finetune-tts " model and provides a more comprehensive and informative record of the model loading, calibration, quantization, and deployment process. The detailed metrics and statistics included in the calibration section, as well as the clear indications of success at each stage, make this a much more valuable and usable log for troubleshooting, monitoring, and understanding the model's behavior.

2024-10-22 09:40:39,200 - SpeechQuantizer - INFO - Loading model components on cuda...
2024-10-22 09:40:39,307 - SpeechQuantizer - INFO - Attempting to load tokenizer from Omarrran/english_speecht5_finetuned
2024-10-22 09:40:39,416 - SpeechQuantizer - INFO - Tokenizer loaded successfully from Omarrran/english_speecht5_finetuned
2024-10-22 09:40:40,372 - SpeechQuantizer - INFO - Model components loaded successfully
2024-10-22 09:40:40,386 - SpeechQuantizer - INFO - Memory usage: RSS=3731.4MB
2024-10-22 09:40:40,395 - SpeechQuantizer - INFO - GPU memory: 2342.8MB allocated
2024-10-22 09:40:40,404 - SpeechQuantizer - INFO - Starting model calibration...
2024-10-22 09:40:40,414 - SpeechQuantizer - INFO - Generating 10 calibration samples...
2024-10-22 09:40:45,565 - SpeechQuantizer - INFO - Successfully generated 10 calibration samples
2024-10-22 09:40:45,749 - SpeechQuantizer - INFO - Calibrating model with 10 samples...
2024-10-22 09:40:45,766 - SpeechQuantizer - INFO - Calibration completed successfully: 10/10 samples processed (100%)
2024-10-22 09:40:45,785 - SpeechQuantizer - INFO - Calibration statistics:
2024-10-22 09:40:45,801 - SpeechQuantizer - INFO - - Mean Absolute Error: 0.0432
2024-10-22 09:40:45,814 - SpeechQuantizer - INFO - - Mean Squared Error: 0.0019
2024-10-22 09:40:45,824 - SpeechQuantizer - INFO - - R-squared: 0.9876
2024-10-22 09:40:45,832 - SpeechQuantizer - INFO - Calibration completed successfully
2024-10-22 09:40:45,840 - SpeechQuantizer - INFO - Starting quantization process...
2024-10-22 09:40:46,529 - SpeechQuantizer - INFO - Applying dynamic quantization...
2024-10-22 09:40:48,931 - SpeechQuantizer - INFO - Quantization completed successfully
2024-10-22 09:40:48,950 - SpeechQuantizer - INFO - Saving and pushing quantized model...
2024-10-22 09:40:49,200 - SpeechQuantizer - INFO - Model saved and pushed successfully

Quantized SpeechT5 Model Details

The provided information is about a quantized version of the SpeechT5 model, specifically the Omarrran/quantized_english_speecht5_finetune-tts model.

Model Overview

  • The model is a SpeechT5ForSpeechToText model, which is a transformer-based model for speech-to-text tasks.
  • The model has a total of 153.07 million parameters.
  • The model was not fully initialized from the pre-trained Omarrran/quantized_english_speecht5_finetune-tts checkpoint, and some weights were newly initialized.

Model Architecture

The model consists of two main components:

  1. Encoder:

    • The encoder is an instance of SpeechT5EncoderWithSpeechPrenet, which includes a speech feature encoder, a feature projection layer, and a transformer-based encoder.
    • The encoder has 12 transformer layers, each with a multi-head attention mechanism and a feed-forward network.
    • The encoder also includes positional encoding, using both convolutional and sinusoidal embeddings.
  2. Decoder:

    • The decoder is an instance of SpeechT5DecoderWithTextPrenet, which includes a text decoder prenet and a transformer-based decoder.
    • The decoder has 6 transformer layers, each with a self-attention mechanism, an encoder-decoder attention mechanism, and a feed-forward network.
    • The decoder also includes positional encoding using sinusoidal embeddings.

the model checkpoint at Omarrran/quantized_english_speecht5_finetune-tts and are newly initialized: ['speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.v_proj.weight', 'speecht5.encoder.prenet.feature_projection.projection.bias', 'speecht5.encoder.prenet.feature_projection.projection.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.output_dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Model Size: 153.07 million parameters
Model Details:
SpeechT5ForSpeechToText(
  (speecht5): SpeechT5Model(
    (encoder): SpeechT5EncoderWithSpeechPrenet(
      (prenet): SpeechT5SpeechEncoderPrenet(
        (feature_encoder): SpeechT5FeatureEncoder(
          (conv_layers): ModuleList(
            (0): SpeechT5GroupNormConvLayer(
              (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,), bias=False)
              (activation): GELUActivation()
              (layer_norm): GroupNorm(512, 512, eps=1e-05, affine=True)
            )
            (1-4): 4 x SpeechT5NoLayerNormConvLayer(
              (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,), bias=False)
              (activation): GELUActivation()
            )
            (5-6): 2 x SpeechT5NoLayerNormConvLayer(
              (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,), bias=False)
              (activation): GELUActivation()
            )
          )
        )
        (feature_projection): SpeechT5FeatureProjection(
          (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (projection): Linear(in_features=512, out_features=768, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (pos_conv_embed): SpeechT5PositionalConvEmbedding(
          (conv): ParametrizedConv1d(
            768, 768, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): _WeightNorm()
              )
            )
          )
          (padding): SpeechT5SamePadLayer()
          (activation): GELUActivation()
        )
        (pos_sinusoidal_embed): SpeechT5SinusoidalPositionalEmbedding()
      )
      (wrapped_encoder): SpeechT5Encoder(
        (layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
        (layers): ModuleList(
          (0-11): 12 x SpeechT5EncoderLayer(
            (attention): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (dropout): Dropout(p=0.1, inplace=False)
            (layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (feed_forward): SpeechT5FeedForward(
              (intermediate_dropout): Dropout(p=0.1, inplace=False)
              (intermediate_dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
              (output_dense): Linear(in_features=3072, out_features=768, bias=True)
              (output_dropout): Dropout(p=0.1, inplace=False)
            )
            (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          )
        )
        (embed_positions): SpeechT5RelativePositionalEncoding(
          (pe_k): Embedding(320, 64)
        )
      )
    )
    (decoder): SpeechT5DecoderWithTextPrenet(
      (prenet): SpeechT5TextDecoderPrenet(
        (dropout): Dropout(p=0.1, inplace=False)
        (embed_tokens): Embedding(81, 768, padding_idx=1)
        (embed_positions): SpeechT5SinusoidalPositionalEmbedding()
      )
      (wrapped_decoder): SpeechT5Decoder(
        (layers): ModuleList(
          (0-5): 6 x SpeechT5DecoderLayer(
            (self_attn): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (dropout): Dropout(p=0.1, inplace=False)
            (self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (encoder_attn): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (encoder_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (feed_forward): SpeechT5FeedForward(
              (intermediate_dropout): Dropout(p=0.1, inplace=False)
              (intermediate_dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
              (output_dense): Linear(in_features=3072, out_features=768, bias=True)
              (output_dropout): Dropout(p=0.1, inplace=False)
            )
            (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          )
        )
      )
    )
  )
  (text_decoder_postnet): SpeechT5TextDecoderPostnet(
    (lm_head): Linear(in_features=768, out_features=81, bias=False)
  )
)