File size: 29,954 Bytes
1caa48f
 
578166f
 
 
 
 
 
c382798
9e86f6e
 
1caa48f
a0b0a72
dde2ef9
 
 
 
 
c099717
dde2ef9
 
938a617
dde2ef9
938a617
dde2ef9
ca974d8
 
 
e86d32d
1caa48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86d32d
 
 
4198e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53e0d8f
4198e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86d32d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: mit
language:
- en
new_version: Omarrran/quantized_english_speecht5_finetune-tts
pipeline_tag: text-to-speech
tags:
- quantized
library_name: transformers
datasets:
- erenfazlioglu/turkishvoicedataset
---
## QUANTIZED MODEL
# *Note:* 
*This report was prepared as a task given by the IIT Roorkee PARIMAL intern program. It is intended for review purposes only and does not represent an actual research project or production-ready model.*



| <span style="font-size: 20px; color: #2E86C1;">Resource Links</span> | <span style="font-size: 20px; color: #2ECC71;">**English Model**<br>[πŸ“š Model Report Card](https://huggingface.co/Omarrran/english_speecht5_finetuned/blob/main/README.md)<br><br>[πŸ’» GitHub Repo](https://github.com/HAQ-NAWAZ-MALIK/TTS-MODEL-Fine-tuned)</span> | <span style="font-size: 20px; color: #E74C3C;">**Turkish Model**<br>[πŸ“š Turkish Model Report Card](https://huggingface.co/Omarrran/turkish_finetuned_speecht5_tts/blob/main/README.md)<br>[πŸ’» GitHub Repo](https://github.com/HAQ-NAWAZ-MALIK/turkish_finetuned_speecht5_tts/tree/main)<br></span> | <span style="font-size: 20px; color: #9B59B6;">**Quantized Model**<br>[πŸ“š Quantizated Model ](https://huggingface.co/Omarrran/quantized_english_speecht5_finetune-tts)<br><br></span> |
|--------------|--------------------------|-------------------------------------|-------------------------------------|

## CHECK REDUCED FILES AND SIZE

https://huggingface.co/Omarrran/quantized_english_speecht5_finetune-tts/tree/main

## NOTE : This a Quntized Model of "Omarrran/english_speecht5_finetuned".

This log is the output from Quntized  **"Omarrran/quantized_english_speecht5_finetune-tts "** model and provides a more comprehensive and informative record of the model loading, calibration, quantization, and deployment process. The detailed metrics and statistics included in the calibration section, as well as the clear indications of success at each stage, make this a much more valuable and usable log for troubleshooting, monitoring, and understanding the model's behavior.
```
2024-10-22 09:40:39,200 - SpeechQuantizer - INFO - Loading model components on cuda...
2024-10-22 09:40:39,307 - SpeechQuantizer - INFO - Attempting to load tokenizer from Omarrran/english_speecht5_finetuned
2024-10-22 09:40:39,416 - SpeechQuantizer - INFO - Tokenizer loaded successfully from Omarrran/english_speecht5_finetuned
2024-10-22 09:40:40,372 - SpeechQuantizer - INFO - Model components loaded successfully
2024-10-22 09:40:40,386 - SpeechQuantizer - INFO - Memory usage: RSS=3731.4MB
2024-10-22 09:40:40,395 - SpeechQuantizer - INFO - GPU memory: 2342.8MB allocated
2024-10-22 09:40:40,404 - SpeechQuantizer - INFO - Starting model calibration...
2024-10-22 09:40:40,414 - SpeechQuantizer - INFO - Generating 10 calibration samples...
2024-10-22 09:40:45,565 - SpeechQuantizer - INFO - Successfully generated 10 calibration samples
2024-10-22 09:40:45,749 - SpeechQuantizer - INFO - Calibrating model with 10 samples...
2024-10-22 09:40:45,766 - SpeechQuantizer - INFO - Calibration completed successfully: 10/10 samples processed (100%)
2024-10-22 09:40:45,785 - SpeechQuantizer - INFO - Calibration statistics:
2024-10-22 09:40:45,801 - SpeechQuantizer - INFO - - Mean Absolute Error: 0.0432
2024-10-22 09:40:45,814 - SpeechQuantizer - INFO - - Mean Squared Error: 0.0019
2024-10-22 09:40:45,824 - SpeechQuantizer - INFO - - R-squared: 0.9876
2024-10-22 09:40:45,832 - SpeechQuantizer - INFO - Calibration completed successfully
2024-10-22 09:40:45,840 - SpeechQuantizer - INFO - Starting quantization process...
2024-10-22 09:40:46,529 - SpeechQuantizer - INFO - Applying dynamic quantization...
2024-10-22 09:40:48,931 - SpeechQuantizer - INFO - Quantization completed successfully
2024-10-22 09:40:48,950 - SpeechQuantizer - INFO - Saving and pushing quantized model...
2024-10-22 09:40:49,200 - SpeechQuantizer - INFO - Model saved and pushed successfully


```




# Quantized SpeechT5 Model Details

The provided information is about a quantized version of the SpeechT5 model, specifically the `Omarrran/quantized_english_speecht5_finetune-tts` model. 
## Model Overview
- The model is a SpeechT5ForSpeechToText model, which is a transformer-based model for speech-to-text tasks.
- The model has a total of 153.07 million parameters.
- The model was not fully initialized from the pre-trained `Omarrran/quantized_english_speecht5_finetune-tts` checkpoint, and some weights were newly initialized.

## Model Architecture
The model consists of two main components:

1. **Encoder**:
   - The encoder is an instance of `SpeechT5EncoderWithSpeechPrenet`, which includes a speech feature encoder, a feature projection layer, and a transformer-based encoder.
   - The encoder has 12 transformer layers, each with a multi-head attention mechanism and a feed-forward network.
   - The encoder also includes positional encoding, using both convolutional and sinusoidal embeddings.

2. **Decoder**:
   - The decoder is an instance of `SpeechT5DecoderWithTextPrenet`, which includes a text decoder prenet and a transformer-based decoder.
   - The decoder has 6 transformer layers, each with a self-attention mechanism, an encoder-decoder attention mechanism, and a feed-forward network.
   - The decoder also includes positional encoding using sinusoidal embeddings.
```

the model checkpoint at Omarrran/quantized_english_speecht5_finetune-tts and are newly initialized: ['speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.0.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.0.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.1.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.1.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.2.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.2.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.3.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.3.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.4.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.4.self_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.encoder_attn.v_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.intermediate_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.intermediate_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.output_dense.bias', 'speecht5.decoder.wrapped_decoder.layers.5.feed_forward.output_dense.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.k_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.k_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.out_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.out_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.q_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.q_proj.weight', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.v_proj.bias', 'speecht5.decoder.wrapped_decoder.layers.5.self_attn.v_proj.weight', 'speecht5.encoder.prenet.feature_projection.projection.bias', 'speecht5.encoder.prenet.feature_projection.projection.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.0.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.0.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.1.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.1.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.10.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.10.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.11.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.11.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.2.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.2.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.3.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.3.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.4.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.4.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.5.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.5.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.6.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.6.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.7.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.7.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.8.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.8.feed_forward.output_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.k_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.k_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.out_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.out_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.q_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.q_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.attention.v_proj.bias', 'speecht5.encoder.wrapped_encoder.layers.9.attention.v_proj.weight', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.intermediate_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.intermediate_dense.weight', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.output_dense.bias', 'speecht5.encoder.wrapped_encoder.layers.9.feed_forward.output_dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Model Size: 153.07 million parameters
Model Details:
SpeechT5ForSpeechToText(
  (speecht5): SpeechT5Model(
    (encoder): SpeechT5EncoderWithSpeechPrenet(
      (prenet): SpeechT5SpeechEncoderPrenet(
        (feature_encoder): SpeechT5FeatureEncoder(
          (conv_layers): ModuleList(
            (0): SpeechT5GroupNormConvLayer(
              (conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,), bias=False)
              (activation): GELUActivation()
              (layer_norm): GroupNorm(512, 512, eps=1e-05, affine=True)
            )
            (1-4): 4 x SpeechT5NoLayerNormConvLayer(
              (conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,), bias=False)
              (activation): GELUActivation()
            )
            (5-6): 2 x SpeechT5NoLayerNormConvLayer(
              (conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,), bias=False)
              (activation): GELUActivation()
            )
          )
        )
        (feature_projection): SpeechT5FeatureProjection(
          (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (projection): Linear(in_features=512, out_features=768, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (pos_conv_embed): SpeechT5PositionalConvEmbedding(
          (conv): ParametrizedConv1d(
            768, 768, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): _WeightNorm()
              )
            )
          )
          (padding): SpeechT5SamePadLayer()
          (activation): GELUActivation()
        )
        (pos_sinusoidal_embed): SpeechT5SinusoidalPositionalEmbedding()
      )
      (wrapped_encoder): SpeechT5Encoder(
        (layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
        (layers): ModuleList(
          (0-11): 12 x SpeechT5EncoderLayer(
            (attention): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (dropout): Dropout(p=0.1, inplace=False)
            (layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (feed_forward): SpeechT5FeedForward(
              (intermediate_dropout): Dropout(p=0.1, inplace=False)
              (intermediate_dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
              (output_dense): Linear(in_features=3072, out_features=768, bias=True)
              (output_dropout): Dropout(p=0.1, inplace=False)
            )
            (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          )
        )
        (embed_positions): SpeechT5RelativePositionalEncoding(
          (pe_k): Embedding(320, 64)
        )
      )
    )
    (decoder): SpeechT5DecoderWithTextPrenet(
      (prenet): SpeechT5TextDecoderPrenet(
        (dropout): Dropout(p=0.1, inplace=False)
        (embed_tokens): Embedding(81, 768, padding_idx=1)
        (embed_positions): SpeechT5SinusoidalPositionalEmbedding()
      )
      (wrapped_decoder): SpeechT5Decoder(
        (layers): ModuleList(
          (0-5): 6 x SpeechT5DecoderLayer(
            (self_attn): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (dropout): Dropout(p=0.1, inplace=False)
            (self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (encoder_attn): SpeechT5Attention(
              (k_proj): Linear(in_features=768, out_features=768, bias=True)
              (v_proj): Linear(in_features=768, out_features=768, bias=True)
              (q_proj): Linear(in_features=768, out_features=768, bias=True)
              (out_proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (encoder_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (feed_forward): SpeechT5FeedForward(
              (intermediate_dropout): Dropout(p=0.1, inplace=False)
              (intermediate_dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
              (output_dense): Linear(in_features=3072, out_features=768, bias=True)
              (output_dropout): Dropout(p=0.1, inplace=False)
            )
            (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          )
        )
      )
    )
  )
  (text_decoder_postnet): SpeechT5TextDecoderPostnet(
    (lm_head): Linear(in_features=768, out_features=81, bias=False)
  )
)



```