metadata
base_model: aubmindlab/bert-base-arabertv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: article_classification_modelv12
results: []
article_classification_modelv12
This model is a fine-tuned version of aubmindlab/bert-base-arabertv2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0733
- Accuracy: 0.9884
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
0.2914 | 1.0 | 5554 | 0.9158 | 0.2781 |
0.2064 | 2.0 | 11108 | 0.9223 | 0.2741 |
0.1649 | 3.0 | 16662 | 0.9248 | 0.2919 |
0.1396 | 4.0 | 22216 | 0.9296 | 0.3014 |
0.1008 | 5.0 | 27770 | 0.9291 | 0.3584 |
0.0806 | 6.0 | 33324 | 0.9290 | 0.4003 |
0.0872 | 7.0 | 38878 | 0.9239 | 0.4435 |
0.0399 | 8.0 | 44432 | 0.9262 | 0.4933 |
0.0302 | 9.0 | 49986 | 0.9269 | 0.5392 |
0.0678 | 10.0 | 55540 | 0.9889 | 0.0564 |
0.0332 | 11.0 | 61094 | 0.9886 | 0.0650 |
0.0315 | 12.0 | 66648 | 0.9886 | 0.0666 |
0.0174 | 13.0 | 72202 | 0.9885 | 0.0701 |
0.0158 | 14.0 | 77756 | 0.9881 | 0.0742 |
0.0054 | 15.0 | 83310 | 0.0733 | 0.9884 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1