File size: 2,289 Bytes
98266e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: aubmindlab/bert-base-arabertv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: article_classification_modelv12
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# article_classification_modelv12
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0733
- Accuracy: 0.9884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.2914 | 1.0 | 5554 | 0.9158 | 0.2781 |
| 0.2064 | 2.0 | 11108 | 0.9223 | 0.2741 |
| 0.1649 | 3.0 | 16662 | 0.9248 | 0.2919 |
| 0.1396 | 4.0 | 22216 | 0.9296 | 0.3014 |
| 0.1008 | 5.0 | 27770 | 0.9291 | 0.3584 |
| 0.0806 | 6.0 | 33324 | 0.9290 | 0.4003 |
| 0.0872 | 7.0 | 38878 | 0.9239 | 0.4435 |
| 0.0399 | 8.0 | 44432 | 0.9262 | 0.4933 |
| 0.0302 | 9.0 | 49986 | 0.9269 | 0.5392 |
| 0.0678 | 10.0 | 55540 | 0.9889 | 0.0564 |
| 0.0332 | 11.0 | 61094 | 0.9886 | 0.0650 |
| 0.0315 | 12.0 | 66648 | 0.9886 | 0.0666 |
| 0.0174 | 13.0 | 72202 | 0.9885 | 0.0701 |
| 0.0158 | 14.0 | 77756 | 0.9881 | 0.0742 |
| 0.0054 | 15.0 | 83310 | 0.0733 | 0.9884 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|