File size: 2,289 Bytes
98266e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: aubmindlab/bert-base-arabertv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: article_classification_modelv12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# article_classification_modelv12

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0733
- Accuracy: 0.9884

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.2914        | 1.0   | 5554  | 0.9158   | 0.2781          |
| 0.2064        | 2.0   | 11108 | 0.9223   | 0.2741          |
| 0.1649        | 3.0   | 16662 | 0.9248   | 0.2919          |
| 0.1396        | 4.0   | 22216 | 0.9296   | 0.3014          |
| 0.1008        | 5.0   | 27770 | 0.9291   | 0.3584          |
| 0.0806        | 6.0   | 33324 | 0.9290   | 0.4003          |
| 0.0872        | 7.0   | 38878 | 0.9239   | 0.4435          |
| 0.0399        | 8.0   | 44432 | 0.9262   | 0.4933          |
| 0.0302        | 9.0   | 49986 | 0.9269   | 0.5392          |
| 0.0678        | 10.0  | 55540 | 0.9889   | 0.0564          |
| 0.0332        | 11.0  | 61094 | 0.9886   | 0.0650          |
| 0.0315        | 12.0  | 66648 | 0.9886   | 0.0666          |
| 0.0174        | 13.0  | 72202 | 0.9885   | 0.0701          |
| 0.0158        | 14.0  | 77756 | 0.9881   | 0.0742          |
| 0.0054        | 15.0  | 83310 | 0.0733   | 0.9884          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1