NotASI's picture
Update README.md
b6f7882 verified
---
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- llama-3
- trl
- sft
base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit
datasets:
- mlabonne/FineTome-100k
model-index:
- name: FineTome-Llama3.2-1B-0929
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.91
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 5.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.28
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.02
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.66
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 4.76
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
name: Open LLM Leaderboard
---
# Notice
**Code + Math** optimized version coming soon!
# IMPORTANT
In case you got the following error:
```
exception: data did not match any variant of untagged enum modelwrapper at line 1251003 column 3
```
Please upgrade your **transformer** package, that is, use the following code:
```
pip install --upgrade "transformers>=4.45"
```
# Uploaded model
- **Developed by:** NotASI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct-bnb-4bit
# Details
This model was trained on **mlabonne/FineTome-100k** for *2* epochs with **rslora** + **qlora**, and achieve the final training loss: *0.796700*.
This model follows the same chat template as the base model one.
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# Usage
Sample notebook (Unsloth): https://colab.research.google.com/drive/1cSCvemKsC0JVmMs4jdfoTqM8SQQ_DSBt?usp=sharing
**Dependencies**
```
!pip install unsloth
!pip install --upgrade "transformers>=4.45"
```
**Code**
```python
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
import torch
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "NotASI/FineTome-Llama3.2-1B-0929",
)
tokenizer = get_chat_template(
tokenizer,
chat_template = "llama-3.1",
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
messages = [
{"role": "user", "content": "Hi!"},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
).to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,
use_cache = True, temperature = 1.5, min_p = 0.1)
```
## Example 1
**Input**:
```
Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8. Give me the next 10 numbers.
```
**Output**:
```
Here are the next 10 numbers in the Fibonacci sequence:
1. 13
2. 21
3. 34
4. 55
5. 89
6. 144
7. 233
8. 377
9. 610
10. 987
11. 1597
12. 2584
13. 4190
14. 6765
15. 10946
16. 17715
Explanation: The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding ones, starting from 0 and 1. To calculate the nth Fibonacci number, you can use the formula F(n) = F(n-1) + F(n-2).<|eot_id|>
```
## Example 2
**Input**:
```
Who are you? Briefy introduce yourself.
```
**Output**:
```
Hi there! I'm an AI assistant designed to help with a range of inquiries. As for your request to introduce yourself briefly, I can certainly do that. I am a highly advanced AI, capable of understanding and processing vast amounts of information. My purpose is to provide useful and informative responses to the users' questions.<|eot_id|>
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NotASI__FineTome-Llama3.2-1B-0929)
| Metric |Value|
|-------------------|----:|
|Avg. | 9.56|
|IFEval (0-Shot) |39.91|
|BBH (3-Shot) | 5.74|
|MATH Lvl 5 (4-Shot)| 1.28|
|GPQA (0-shot) | 3.02|
|MuSR (0-shot) | 2.66|
|MMLU-PRO (5-shot) | 4.76|