File size: 6,422 Bytes
6dc5d18
 
 
8704c6f
6dc5d18
 
 
 
 
8704c6f
6dc5d18
ac261b0
21d77fc
0e0ca77
 
21d77fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc5d18
 
2ba3f43
 
d72adfa
 
a8e0c2d
 
eb00d72
4da26b2
 
 
eb00d72
4da26b2
 
 
a8e0c2d
6dc5d18
 
 
 
 
 
0e0ca77
 
 
 
 
 
6dc5d18
 
c74bfdf
 
 
 
2518836
 
c74bfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c8742
c74bfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
7d18b36
c74bfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d77fc
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- llama-3
- trl
- sft
base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit
datasets:
- mlabonne/FineTome-100k
model-index:
- name: FineTome-Llama3.2-1B-0929
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 39.91
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 5.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.28
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.02
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.66
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 4.76
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NotASI/FineTome-Llama3.2-1B-0929
      name: Open LLM Leaderboard
---

# Notice

**Code + Math** optimized version coming soon!

# IMPORTANT

In case you got the following error:
```
exception: data did not match any variant of untagged enum modelwrapper at line 1251003 column 3
```
Please upgrade your **transformer** package, that is, use the following code:
```
pip install --upgrade "transformers>=4.45"
```

# Uploaded  model

- **Developed by:** NotASI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct-bnb-4bit

# Details

This model was trained on **mlabonne/FineTome-100k** for *2* epochs with **rslora** + **qlora**, and achieve the final training loss: *0.796700*.

This model follows the same chat template as the base model one.

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

# Usage

Sample notebook (Unsloth): https://colab.research.google.com/drive/1cSCvemKsC0JVmMs4jdfoTqM8SQQ_DSBt?usp=sharing

**Dependencies**

```
!pip install unsloth
!pip install --upgrade "transformers>=4.45"
```

**Code**

```python
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
import torch

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "NotASI/FineTome-Llama3.2-1B-0929",
)

tokenizer = get_chat_template(
    tokenizer,
    chat_template = "llama-3.1",
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

messages = [
    {"role": "user", "content": "Hi!"},
]
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize = True,
    add_generation_prompt = True, # Must add for generation
    return_tensors = "pt",
).to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,
                   use_cache = True, temperature = 1.5, min_p = 0.1)
```

## Example 1

**Input**:
```
Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8. Give me the next 10 numbers.
```

**Output**:
```
Here are the next 10 numbers in the Fibonacci sequence:

1. 13
2. 21
3. 34
4. 55
5. 89
6. 144
7. 233
8. 377
9. 610
10. 987
11. 1597
12. 2584
13. 4190
14. 6765
15. 10946
16. 17715

Explanation: The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding ones, starting from 0 and 1. To calculate the nth Fibonacci number, you can use the formula F(n) = F(n-1) + F(n-2).<|eot_id|>
```

## Example 2

**Input**:
```
Who are you? Briefy introduce yourself.
```

**Output**:
```
Hi there! I'm an AI assistant designed to help with a range of inquiries. As for your request to introduce yourself briefly, I can certainly do that. I am a highly advanced AI, capable of understanding and processing vast amounts of information. My purpose is to provide useful and informative responses to the users' questions.<|eot_id|>
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NotASI__FineTome-Llama3.2-1B-0929)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 9.56|
|IFEval (0-Shot)    |39.91|
|BBH (3-Shot)       | 5.74|
|MATH Lvl 5 (4-Shot)| 1.28|
|GPQA (0-shot)      | 3.02|
|MuSR (0-shot)      | 2.66|
|MMLU-PRO (5-shot)  | 4.76|