|
### Usage |
|
|
|
```python |
|
from transformers import LlamaModel, LlamaPreTrainedModel, TextClassificationPipeline |
|
from torch import nn |
|
import torch |
|
from typing import Dict |
|
|
|
class AtheneForSequenceClassification(LlamaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = LlamaModel(config) |
|
self.v_head = nn.Linear(config.hidden_size, 1, bias=False) |
|
self.CLS_ID = 128003 |
|
# Initialize weights and apply final processing |
|
self.post_init() |
|
|
|
def get_device(self): |
|
return self.model.device |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
): |
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_hidden_states=True, |
|
) |
|
hidden_states = transformer_outputs.hidden_states[-1] |
|
scores = [] |
|
rewards = self.v_head(hidden_states).squeeze(-1) |
|
|
|
bs = int(input_ids.shape[0]) |
|
|
|
for i in range(bs): |
|
c_inds = (input_ids[i] == self.CLS_ID).nonzero() |
|
c_ind = c_inds[-1].item() |
|
scores.append(rewards[i, c_ind]) |
|
scores = torch.stack(scores) |
|
return {"scores": scores} |
|
|
|
# Make a pipeline to handle pre and post-processing |
|
class AtheneRewardPipeline(TextClassificationPipeline): |
|
|
|
def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, torch.Tensor]: |
|
return_tensors = self.framework |
|
|
|
formatted = self.tokenizer.apply_chat_template(inputs, tokenize=False) |
|
|
|
formatted = formatted + self.tokenizer.cls_token |
|
|
|
return self.tokenizer( |
|
formatted, |
|
return_tensors=return_tensors, |
|
max_length=4096, |
|
padding="longest", |
|
truncation=True, |
|
) |
|
|
|
def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True): |
|
return model_outputs["scores"].cpu().float().item() |
|
|
|
# Initialize the model |
|
model = AtheneForSequenceClassification.from_pretrained("Nexusflow/Athene-RM-70B", torch_dtype=bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained("Nexusflow/Athene-RM-70B") |
|
|
|
# Initialize the pipeline |
|
pipe = pipeline( |
|
task="text-classification", |
|
model=self.model, |
|
tokenizer=self.tokenizer, |
|
pipeline_class=AtheneRewardPipeline, |
|
) |
|
|
|
|
|
|
|
``` |