evan-nexusflow
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Usage
|
2 |
+
|
3 |
+
```python
|
4 |
+
from transformers import LlamaModel, LlamaPreTrainedModel, TextClassificationPipeline
|
5 |
+
from torch import nn
|
6 |
+
import torch
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
class AtheneForSequenceClassification(LlamaPreTrainedModel):
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__(config)
|
12 |
+
self.model = LlamaModel(config)
|
13 |
+
self.v_head = nn.Linear(config.hidden_size, 1, bias=False)
|
14 |
+
self.CLS_ID = 128003
|
15 |
+
# Initialize weights and apply final processing
|
16 |
+
self.post_init()
|
17 |
+
|
18 |
+
def get_device(self):
|
19 |
+
return self.model.device
|
20 |
+
|
21 |
+
def forward(
|
22 |
+
self,
|
23 |
+
input_ids=None,
|
24 |
+
past_key_values=None,
|
25 |
+
attention_mask=None,
|
26 |
+
position_ids=None,
|
27 |
+
):
|
28 |
+
transformer_outputs = self.model(
|
29 |
+
input_ids,
|
30 |
+
attention_mask=attention_mask,
|
31 |
+
position_ids=position_ids,
|
32 |
+
output_hidden_states=True,
|
33 |
+
)
|
34 |
+
hidden_states = transformer_outputs.hidden_states[-1]
|
35 |
+
scores = []
|
36 |
+
rewards = self.v_head(hidden_states).squeeze(-1)
|
37 |
+
|
38 |
+
bs = int(input_ids.shape[0])
|
39 |
+
|
40 |
+
for i in range(bs):
|
41 |
+
c_inds = (input_ids[i] == self.CLS_ID).nonzero()
|
42 |
+
c_ind = c_inds[-1].item()
|
43 |
+
scores.append(rewards[i, c_ind])
|
44 |
+
scores = torch.stack(scores)
|
45 |
+
return {"scores": scores}
|
46 |
+
|
47 |
+
# Make a pipeline to handle pre and post-processing
|
48 |
+
class AtheneRewardPipeline(TextClassificationPipeline):
|
49 |
+
|
50 |
+
def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, torch.Tensor]:
|
51 |
+
return_tensors = self.framework
|
52 |
+
|
53 |
+
formatted = self.tokenizer.apply_chat_template(inputs, tokenize=False)
|
54 |
+
|
55 |
+
formatted = formatted + self.tokenizer.cls_token
|
56 |
+
|
57 |
+
return self.tokenizer(
|
58 |
+
formatted,
|
59 |
+
return_tensors=return_tensors,
|
60 |
+
max_length=4096,
|
61 |
+
padding="longest",
|
62 |
+
truncation=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True):
|
66 |
+
return model_outputs["scores"].cpu().float().item()
|
67 |
+
|
68 |
+
# Initialize the model
|
69 |
+
model = AtheneForSequenceClassification.from_pretrained("Nexusflow/Athene-RM-70B", torch_dtype=bfloat16)
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("Nexusflow/Athene-RM-70B")
|
71 |
+
|
72 |
+
# Initialize the pipeline
|
73 |
+
pipe = pipeline(
|
74 |
+
task="text-classification",
|
75 |
+
model=self.model,
|
76 |
+
tokenizer=self.tokenizer,
|
77 |
+
pipeline_class=AtheneRewardPipeline,
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
```
|