|
--- |
|
license: other |
|
base_model: HuggingFaceM4/idefics-9b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: idefics-9b-dresses-gpt4 |
|
results: [] |
|
library_name: peft |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idefics-9b-dresses-gpt4 |
|
|
|
This model is a fine-tuned version of [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: ['lm_head', 'embed_tokens'] |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: float16 |
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.0 | 0.03 | 20 | nan | |
|
| 0.0 | 0.06 | 40 | nan | |
|
| 0.0 | 0.09 | 60 | nan | |
|
| 0.0 | 0.12 | 80 | nan | |
|
| 0.0 | 0.14 | 100 | nan | |
|
| 0.0 | 0.17 | 120 | nan | |
|
| 0.0 | 0.2 | 140 | nan | |
|
| 0.0 | 0.23 | 160 | nan | |
|
| 0.0 | 0.26 | 180 | nan | |
|
| 0.0 | 0.29 | 200 | nan | |
|
| 0.0 | 0.32 | 220 | nan | |
|
| 0.0 | 0.35 | 240 | nan | |
|
| 0.0 | 0.38 | 260 | nan | |
|
| 0.0 | 0.41 | 280 | nan | |
|
| 0.0 | 0.43 | 300 | nan | |
|
| 0.0 | 0.46 | 320 | nan | |
|
| 0.0 | 0.49 | 340 | nan | |
|
| 0.0 | 0.52 | 360 | nan | |
|
| 0.0 | 0.55 | 380 | nan | |
|
| 0.0 | 0.58 | 400 | nan | |
|
| 0.0 | 0.61 | 420 | nan | |
|
| 0.0 | 0.64 | 440 | nan | |
|
| 0.0 | 0.67 | 460 | nan | |
|
| 0.0 | 0.7 | 480 | nan | |
|
| 0.0 | 0.72 | 500 | nan | |
|
| 0.0 | 0.75 | 520 | nan | |
|
| 0.0 | 0.78 | 540 | nan | |
|
| 0.0 | 0.81 | 560 | nan | |
|
| 0.0 | 0.84 | 580 | nan | |
|
| 0.0 | 0.87 | 600 | nan | |
|
| 0.0 | 0.9 | 620 | nan | |
|
| 0.0 | 0.93 | 640 | nan | |
|
| 0.0 | 0.96 | 660 | nan | |
|
| 0.0 | 0.99 | 680 | nan | |
|
| 0.0 | 1.01 | 700 | nan | |
|
| 0.0 | 1.04 | 720 | nan | |
|
| 0.0 | 1.07 | 740 | nan | |
|
| 0.0 | 1.1 | 760 | nan | |
|
| 0.0 | 1.13 | 780 | nan | |
|
| 0.0 | 1.16 | 800 | nan | |
|
| 0.0 | 1.19 | 820 | nan | |
|
| 0.0 | 1.22 | 840 | nan | |
|
| 0.0 | 1.25 | 860 | nan | |
|
| 0.0 | 1.28 | 880 | nan | |
|
| 0.0 | 1.3 | 900 | nan | |
|
| 0.0 | 1.33 | 920 | nan | |
|
| 0.0 | 1.36 | 940 | nan | |
|
| 0.0 | 1.39 | 960 | nan | |
|
| 0.0 | 1.42 | 980 | nan | |
|
| 0.0 | 1.45 | 1000 | nan | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.6.0.dev0 |
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|