metadata
license: other
base_model: HuggingFaceM4/idefics-9b
tags:
- generated_from_trainer
model-index:
- name: idefics-9b-dresses-gpt4
results: []
library_name: peft
idefics-9b-dresses-gpt4
This model is a fine-tuned version of HuggingFaceM4/idefics-9b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: ['lm_head', 'embed_tokens']
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.03 | 20 | nan |
0.0 | 0.06 | 40 | nan |
0.0 | 0.09 | 60 | nan |
0.0 | 0.12 | 80 | nan |
0.0 | 0.14 | 100 | nan |
0.0 | 0.17 | 120 | nan |
0.0 | 0.2 | 140 | nan |
0.0 | 0.23 | 160 | nan |
0.0 | 0.26 | 180 | nan |
0.0 | 0.29 | 200 | nan |
0.0 | 0.32 | 220 | nan |
0.0 | 0.35 | 240 | nan |
0.0 | 0.38 | 260 | nan |
0.0 | 0.41 | 280 | nan |
0.0 | 0.43 | 300 | nan |
0.0 | 0.46 | 320 | nan |
0.0 | 0.49 | 340 | nan |
0.0 | 0.52 | 360 | nan |
0.0 | 0.55 | 380 | nan |
0.0 | 0.58 | 400 | nan |
0.0 | 0.61 | 420 | nan |
0.0 | 0.64 | 440 | nan |
0.0 | 0.67 | 460 | nan |
0.0 | 0.7 | 480 | nan |
0.0 | 0.72 | 500 | nan |
0.0 | 0.75 | 520 | nan |
0.0 | 0.78 | 540 | nan |
0.0 | 0.81 | 560 | nan |
0.0 | 0.84 | 580 | nan |
0.0 | 0.87 | 600 | nan |
0.0 | 0.9 | 620 | nan |
0.0 | 0.93 | 640 | nan |
0.0 | 0.96 | 660 | nan |
0.0 | 0.99 | 680 | nan |
0.0 | 1.01 | 700 | nan |
0.0 | 1.04 | 720 | nan |
0.0 | 1.07 | 740 | nan |
0.0 | 1.1 | 760 | nan |
0.0 | 1.13 | 780 | nan |
0.0 | 1.16 | 800 | nan |
0.0 | 1.19 | 820 | nan |
0.0 | 1.22 | 840 | nan |
0.0 | 1.25 | 860 | nan |
0.0 | 1.28 | 880 | nan |
0.0 | 1.3 | 900 | nan |
0.0 | 1.33 | 920 | nan |
0.0 | 1.36 | 940 | nan |
0.0 | 1.39 | 960 | nan |
0.0 | 1.42 | 980 | nan |
0.0 | 1.45 | 1000 | nan |
Framework versions
- PEFT 0.6.0.dev0
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3