Dialogue_dfm / README.md
yemen2016's picture
End of training
d5d1aee verified
|
raw
history blame
2.56 kB
metadata
library_name: transformers
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: dfm
    results: []

dfm

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9981
  • Precision: 0.9980
  • Recall: 0.9981
  • F1: 0.9979
  • Loss: 0.0066

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 0.9524 10 0.9116 0.8719 0.9116 0.8909 0.3402
No log 2.0 21 0.9585 0.9581 0.9585 0.9535 0.1368
No log 2.9524 31 0.9818 0.9806 0.9818 0.9812 0.0664
No log 4.0 42 0.9926 0.9912 0.9926 0.9919 0.0286
No log 4.9524 52 0.9947 0.9934 0.9947 0.9940 0.0209
No log 6.0 63 0.9953 0.9941 0.9953 0.9946 0.0159
No log 6.9524 73 0.9967 0.9968 0.9967 0.9963 0.0107
No log 8.0 84 0.9977 0.9977 0.9977 0.9975 0.0082
No log 8.9524 94 0.9980 0.9979 0.9980 0.9978 0.0067
No log 9.5238 100 0.9981 0.9980 0.9981 0.9979 0.0066

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Tokenizers 0.19.1