File size: 2,562 Bytes
d5d1aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: dfm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dfm

This model is a fine-tuned version of [KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align](https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9981
- Precision: 0.9980
- Recall: 0.9981
- F1: 0.9979
- Loss: 0.0066

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Accuracy | Precision | Recall | F1     | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:|
| No log        | 0.9524 | 10   | 0.9116   | 0.8719    | 0.9116 | 0.8909 | 0.3402          |
| No log        | 2.0    | 21   | 0.9585   | 0.9581    | 0.9585 | 0.9535 | 0.1368          |
| No log        | 2.9524 | 31   | 0.9818   | 0.9806    | 0.9818 | 0.9812 | 0.0664          |
| No log        | 4.0    | 42   | 0.9926   | 0.9912    | 0.9926 | 0.9919 | 0.0286          |
| No log        | 4.9524 | 52   | 0.9947   | 0.9934    | 0.9947 | 0.9940 | 0.0209          |
| No log        | 6.0    | 63   | 0.9953   | 0.9941    | 0.9953 | 0.9946 | 0.0159          |
| No log        | 6.9524 | 73   | 0.9967   | 0.9968    | 0.9967 | 0.9963 | 0.0107          |
| No log        | 8.0    | 84   | 0.9977   | 0.9977    | 0.9977 | 0.9975 | 0.0082          |
| No log        | 8.9524 | 94   | 0.9980   | 0.9979    | 0.9980 | 0.9978 | 0.0067          |
| No log        | 9.5238 | 100  | 0.9981   | 0.9980    | 0.9981 | 0.9979 | 0.0066          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1